Vily1998 commited on
Commit
2485ec4
·
1 Parent(s): 986fa9c
._tokenizer.json ADDED
Binary file (4.1 kB). View file
 
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ICTNLP/Llama-2-7b-chat-TruthX",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_llama.LlamaConfig",
8
+ "AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM",
9
+ "AutoModel": "modeling_llama.LlamaModel"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 4096,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 32,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_scaling": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "float16",
27
+ "transformers_version": "4.32.0.dev0",
28
+ "use_cache": true,
29
+ "vocab_size": 32000,
30
+ "truthx_config": {
31
+ "path":"truthx_model.pt"
32
+ }
33
+ }
configuration_llama.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class LlamaConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`LlamaModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
65
+ Llama 2 up to 4096, CodeLlama up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+ attention_dropout (`float`, *optional*, defaults to 0.0):
99
+ The dropout ratio for the attention probabilities.
100
+
101
+ ```python
102
+ >>> from transformers import LlamaModel, LlamaConfig
103
+
104
+ >>> # Initializing a LLaMA llama-7b style configuration
105
+ >>> configuration = LlamaConfig()
106
+
107
+ >>> # Initializing a model from the llama-7b style configuration
108
+ >>> model = LlamaModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "llama"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.hidden_size = hidden_size
144
+ self.intermediate_size = intermediate_size
145
+ self.num_hidden_layers = num_hidden_layers
146
+ self.num_attention_heads = num_attention_heads
147
+
148
+ # for backward compatibility
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.hidden_act = hidden_act
154
+ self.initializer_range = initializer_range
155
+ self.rms_norm_eps = rms_norm_eps
156
+ self.pretraining_tp = pretraining_tp
157
+ self.use_cache = use_cache
158
+ self.rope_theta = rope_theta
159
+ self.rope_scaling = rope_scaling
160
+ self._rope_scaling_validation()
161
+ self.attention_bias = attention_bias
162
+ self.attention_dropout = attention_dropout
163
+
164
+ super().__init__(
165
+ pad_token_id=pad_token_id,
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ tie_word_embeddings=tie_word_embeddings,
169
+ **kwargs,
170
+ )
171
+
172
+ def _rope_scaling_validation(self):
173
+ """
174
+ Validate the `rope_scaling` configuration.
175
+ """
176
+ if self.rope_scaling is None:
177
+ return
178
+
179
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
180
+ raise ValueError(
181
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
182
+ f"got {self.rope_scaling}"
183
+ )
184
+ rope_scaling_type = self.rope_scaling.get("type", None)
185
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
186
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
187
+ raise ValueError(
188
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
189
+ )
190
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
191
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.32.0.dev0"
10
+ }
modeling_llama.py ADDED
@@ -0,0 +1,1517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ # is_flash_attn_2_available,
46
+ # is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.import_utils import is_torch_fx_available
51
+ from .configuration_llama import LlamaConfig
52
+
53
+ from .truthx import TruthX,MLPAE
54
+
55
+
56
+ # if is_flash_attn_2_available():
57
+ # from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ # from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
+
60
+
61
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
62
+ # It means that the function will not be traced through and simply appear as a node in the graph.
63
+ if is_torch_fx_available():
64
+ if not is_torch_greater_or_equal_than_1_13:
65
+ import torch.fx
66
+
67
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
68
+
69
+
70
+ logger = logging.get_logger(__name__)
71
+
72
+ _CONFIG_FOR_DOC = "LlamaConfig"
73
+
74
+
75
+ def _get_unpad_data(attention_mask):
76
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
77
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
78
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
79
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
80
+ return (
81
+ indices,
82
+ cu_seqlens,
83
+ max_seqlen_in_batch,
84
+ )
85
+
86
+
87
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
88
+ warnings.warn(
89
+ "Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
90
+ )
91
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
92
+
93
+
94
+ def _make_causal_mask(
95
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
96
+ ):
97
+ warnings.warn(
98
+ "Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
99
+ )
100
+ return AttentionMaskConverter._make_causal_mask(
101
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
102
+ )
103
+
104
+ class LlamaRMSNorm(nn.Module):
105
+ def __init__(self, hidden_size, eps=1e-6):
106
+ """
107
+ LlamaRMSNorm is equivalent to T5LayerNorm
108
+ """
109
+ super().__init__()
110
+ self.weight = nn.Parameter(torch.ones(hidden_size))
111
+ self.variance_epsilon = eps
112
+
113
+ def forward(self, hidden_states):
114
+ input_dtype = hidden_states.dtype
115
+ hidden_states = hidden_states.to(torch.float32)
116
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
117
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
118
+ return self.weight * hidden_states.to(input_dtype)
119
+
120
+
121
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
122
+
123
+
124
+ class LlamaRotaryEmbedding(nn.Module):
125
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
126
+ super().__init__()
127
+
128
+ self.dim = dim
129
+ self.max_position_embeddings = max_position_embeddings
130
+ self.base = base
131
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
132
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
133
+
134
+ # Build here to make `torch.jit.trace` work.
135
+ self._set_cos_sin_cache(
136
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
137
+ )
138
+
139
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
140
+ self.max_seq_len_cached = seq_len
141
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
142
+
143
+ freqs = torch.outer(t, self.inv_freq)
144
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
145
+ emb = torch.cat((freqs, freqs), dim=-1)
146
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
147
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
148
+
149
+ def forward(self, x, seq_len=None):
150
+ # x: [bs, num_attention_heads, seq_len, head_size]
151
+ if seq_len > self.max_seq_len_cached:
152
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
153
+
154
+ return (
155
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
156
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
157
+ )
158
+
159
+
160
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
161
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
162
+
163
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
164
+ self.scaling_factor = scaling_factor
165
+ super().__init__(dim, max_position_embeddings, base, device)
166
+
167
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
168
+ self.max_seq_len_cached = seq_len
169
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
170
+ t = t / self.scaling_factor
171
+
172
+ freqs = torch.outer(t, self.inv_freq)
173
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
174
+ emb = torch.cat((freqs, freqs), dim=-1)
175
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
176
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
177
+
178
+
179
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
180
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
181
+
182
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
183
+ self.scaling_factor = scaling_factor
184
+ super().__init__(dim, max_position_embeddings, base, device)
185
+
186
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
187
+ self.max_seq_len_cached = seq_len
188
+
189
+ if seq_len > self.max_position_embeddings:
190
+ base = self.base * (
191
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
192
+ ) ** (self.dim / (self.dim - 2))
193
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
194
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
195
+
196
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
197
+
198
+ freqs = torch.outer(t, self.inv_freq)
199
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
200
+ emb = torch.cat((freqs, freqs), dim=-1)
201
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
202
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
203
+
204
+
205
+ def rotate_half(x):
206
+ """Rotates half the hidden dims of the input."""
207
+ x1 = x[..., : x.shape[-1] // 2]
208
+ x2 = x[..., x.shape[-1] // 2 :]
209
+ return torch.cat((-x2, x1), dim=-1)
210
+
211
+
212
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
213
+ """Applies Rotary Position Embedding to the query and key tensors.
214
+
215
+ Args:
216
+ q (`torch.Tensor`): The query tensor.
217
+ k (`torch.Tensor`): The key tensor.
218
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
219
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
220
+ position_ids (`torch.Tensor`):
221
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
222
+ used to pass offsetted position ids when working with a KV-cache.
223
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
224
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
225
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
226
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
227
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
228
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
229
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
230
+ Returns:
231
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
232
+ """
233
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
234
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
235
+ q_embed = (q * cos) + (rotate_half(q) * sin)
236
+ k_embed = (k * cos) + (rotate_half(k) * sin)
237
+ return q_embed, k_embed
238
+
239
+
240
+ class LlamaMLP(nn.Module):
241
+ def __init__(self, config):
242
+ super().__init__()
243
+ self.config = config
244
+ self.hidden_size = config.hidden_size
245
+ self.intermediate_size = config.intermediate_size
246
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
247
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
248
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
249
+ self.act_fn = ACT2FN[config.hidden_act]
250
+
251
+ def forward(self, x):
252
+ if self.config.pretraining_tp > 1:
253
+ slice = self.intermediate_size // self.config.pretraining_tp
254
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
255
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
256
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
257
+
258
+ gate_proj = torch.cat(
259
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
260
+ )
261
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
262
+
263
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
264
+ down_proj = [
265
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
266
+ ]
267
+ down_proj = sum(down_proj)
268
+ else:
269
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
270
+
271
+ return down_proj
272
+
273
+
274
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
275
+ """
276
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
277
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
278
+ """
279
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
280
+ if n_rep == 1:
281
+ return hidden_states
282
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
283
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
284
+
285
+
286
+ class LlamaAttention(nn.Module):
287
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
288
+
289
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
290
+ super().__init__()
291
+ self.config = config
292
+ self.layer_idx = layer_idx
293
+ if layer_idx is None:
294
+ logger.warning_once(
295
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
296
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
297
+ "when creating this class."
298
+ )
299
+
300
+ self.attention_dropout = config.attention_dropout
301
+ self.hidden_size = config.hidden_size
302
+ self.num_heads = config.num_attention_heads
303
+ self.head_dim = self.hidden_size // self.num_heads
304
+ self.num_key_value_heads = config.num_key_value_heads
305
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
306
+ self.max_position_embeddings = config.max_position_embeddings
307
+ self.rope_theta = config.rope_theta
308
+ self.is_causal = True
309
+
310
+ if (self.head_dim * self.num_heads) != self.hidden_size:
311
+ raise ValueError(
312
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
313
+ f" and `num_heads`: {self.num_heads})."
314
+ )
315
+
316
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
317
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
318
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
319
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
320
+ self._init_rope()
321
+
322
+ def _init_rope(self):
323
+ if self.config.rope_scaling is None:
324
+ self.rotary_emb = LlamaRotaryEmbedding(
325
+ self.head_dim,
326
+ max_position_embeddings=self.max_position_embeddings,
327
+ base=self.rope_theta,
328
+ )
329
+ else:
330
+ scaling_type = self.config.rope_scaling["type"]
331
+ scaling_factor = self.config.rope_scaling["factor"]
332
+ if scaling_type == "linear":
333
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
334
+ self.head_dim,
335
+ max_position_embeddings=self.max_position_embeddings,
336
+ scaling_factor=scaling_factor,
337
+ base=self.rope_theta,
338
+ )
339
+ elif scaling_type == "dynamic":
340
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
341
+ self.head_dim,
342
+ max_position_embeddings=self.max_position_embeddings,
343
+ scaling_factor=scaling_factor,
344
+ base=self.rope_theta,
345
+ )
346
+ else:
347
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
348
+
349
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
350
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
351
+
352
+ def forward(
353
+ self,
354
+ hidden_states: torch.Tensor,
355
+ attention_mask: Optional[torch.Tensor] = None,
356
+ position_ids: Optional[torch.LongTensor] = None,
357
+ past_key_value: Optional[Cache] = None,
358
+ output_attentions: bool = False,
359
+ use_cache: bool = False,
360
+ truthx_model=None,
361
+ **kwargs,
362
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
363
+ if "padding_mask" in kwargs:
364
+ warnings.warn(
365
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
366
+ )
367
+
368
+ bsz, q_len, _ = hidden_states.size()
369
+
370
+ if self.config.pretraining_tp > 1:
371
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
372
+ query_slices = self.q_proj.weight.split(
373
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
374
+ )
375
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
376
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
377
+
378
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
379
+ query_states = torch.cat(query_states, dim=-1)
380
+
381
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
382
+ key_states = torch.cat(key_states, dim=-1)
383
+
384
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
385
+ value_states = torch.cat(value_states, dim=-1)
386
+
387
+ else:
388
+ query_states = self.q_proj(hidden_states)
389
+ key_states = self.k_proj(hidden_states)
390
+ value_states = self.v_proj(hidden_states)
391
+
392
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
393
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
394
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
395
+
396
+ kv_seq_len = key_states.shape[-2]
397
+ if past_key_value is not None:
398
+ if self.layer_idx is None:
399
+ raise ValueError(
400
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
401
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
402
+ "with a layer index."
403
+ )
404
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
405
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
406
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
407
+
408
+ if past_key_value is not None:
409
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
410
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
411
+
412
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
413
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
414
+
415
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
416
+
417
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
418
+ raise ValueError(
419
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
420
+ f" {attn_weights.size()}"
421
+ )
422
+
423
+ if attention_mask is not None:
424
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
425
+ raise ValueError(
426
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
427
+ )
428
+ attn_weights = attn_weights + attention_mask
429
+
430
+ # upcast attention to fp32
431
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
432
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
433
+ attn_output = torch.matmul(attn_weights, value_states)
434
+
435
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
436
+ raise ValueError(
437
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
438
+ f" {attn_output.size()}"
439
+ )
440
+
441
+ attn_output = attn_output.transpose(1, 2).contiguous()
442
+
443
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
444
+
445
+ #################
446
+ ## TruthX Code ##
447
+ #################
448
+ _attn_output=attn_output.contiguous()
449
+ # truthx
450
+ if truthx_model is not None:
451
+ attn_output=truthx_model.edit(attn_output)
452
+
453
+
454
+ if self.config.pretraining_tp > 1:
455
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
456
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
457
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
458
+ else:
459
+ attn_output = self.o_proj(attn_output)
460
+
461
+ if not output_attentions:
462
+ attn_weights = None
463
+
464
+ return attn_output, attn_weights, past_key_value,_attn_output
465
+
466
+
467
+ class LlamaFlashAttention2(LlamaAttention):
468
+ """
469
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
470
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
471
+ flash attention and deal with padding tokens in case the input contains any of them.
472
+ """
473
+
474
+ def __init__(self, *args, **kwargs):
475
+ super().__init__(*args, **kwargs)
476
+
477
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
478
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
479
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
480
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
481
+
482
+ def forward(
483
+ self,
484
+ hidden_states: torch.Tensor,
485
+ attention_mask: Optional[torch.LongTensor] = None,
486
+ position_ids: Optional[torch.LongTensor] = None,
487
+ past_key_value: Optional[Cache] = None,
488
+ output_attentions: bool = False,
489
+ use_cache: bool = False,
490
+ **kwargs,
491
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
492
+ # LlamaFlashAttention2 attention does not support output_attentions
493
+ if "padding_mask" in kwargs:
494
+ warnings.warn(
495
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
496
+ )
497
+
498
+ # overwrite attention_mask with padding_mask
499
+ attention_mask = kwargs.pop("padding_mask")
500
+
501
+ output_attentions = False
502
+
503
+ bsz, q_len, _ = hidden_states.size()
504
+
505
+ query_states = self.q_proj(hidden_states)
506
+ key_states = self.k_proj(hidden_states)
507
+ value_states = self.v_proj(hidden_states)
508
+
509
+ # Flash attention requires the input to have the shape
510
+ # batch_size x seq_length x head_dim x hidden_dim
511
+ # therefore we just need to keep the original shape
512
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
513
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
514
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
515
+
516
+ kv_seq_len = key_states.shape[-2]
517
+ if past_key_value is not None:
518
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
519
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
520
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
521
+
522
+ if past_key_value is not None:
523
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
524
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
525
+
526
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
527
+ # to be able to avoid many of these transpose/reshape/view.
528
+ query_states = query_states.transpose(1, 2)
529
+ key_states = key_states.transpose(1, 2)
530
+ value_states = value_states.transpose(1, 2)
531
+
532
+ dropout_rate = self.attention_dropout if self.training else 0.0
533
+
534
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
535
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
536
+ # cast them back in the correct dtype just to be sure everything works as expected.
537
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
538
+ # in fp32. (LlamaRMSNorm handles it correctly)
539
+
540
+ input_dtype = query_states.dtype
541
+ if input_dtype == torch.float32:
542
+ if torch.is_autocast_enabled():
543
+ target_dtype = torch.get_autocast_gpu_dtype()
544
+ # Handle the case where the model is quantized
545
+ elif hasattr(self.config, "_pre_quantization_dtype"):
546
+ target_dtype = self.config._pre_quantization_dtype
547
+ else:
548
+ target_dtype = self.q_proj.weight.dtype
549
+
550
+ logger.warning_once(
551
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
552
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
553
+ f" {target_dtype}."
554
+ )
555
+
556
+ query_states = query_states.to(target_dtype)
557
+ key_states = key_states.to(target_dtype)
558
+ value_states = value_states.to(target_dtype)
559
+
560
+ attn_output = self._flash_attention_forward(
561
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
562
+ )
563
+
564
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
565
+ attn_output = self.o_proj(attn_output)
566
+
567
+ if not output_attentions:
568
+ attn_weights = None
569
+
570
+ return attn_output, attn_weights, past_key_value
571
+
572
+ def _flash_attention_forward(
573
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
574
+ ):
575
+ """
576
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
577
+ first unpad the input, then computes the attention scores and pad the final attention scores.
578
+
579
+ Args:
580
+ query_states (`torch.Tensor`):
581
+ Input query states to be passed to Flash Attention API
582
+ key_states (`torch.Tensor`):
583
+ Input key states to be passed to Flash Attention API
584
+ value_states (`torch.Tensor`):
585
+ Input value states to be passed to Flash Attention API
586
+ attention_mask (`torch.Tensor`):
587
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
588
+ position of padding tokens and 1 for the position of non-padding tokens.
589
+ dropout (`int`, *optional*):
590
+ Attention dropout
591
+ softmax_scale (`float`, *optional*):
592
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
593
+ """
594
+ if not self._flash_attn_uses_top_left_mask:
595
+ causal = self.is_causal
596
+ else:
597
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
598
+ causal = self.is_causal and query_length != 1
599
+
600
+ # Contains at least one padding token in the sequence
601
+ if attention_mask is not None:
602
+ batch_size = query_states.shape[0]
603
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
604
+ query_states, key_states, value_states, attention_mask, query_length
605
+ )
606
+
607
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
608
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
609
+
610
+ attn_output_unpad = flash_attn_varlen_func(
611
+ query_states,
612
+ key_states,
613
+ value_states,
614
+ cu_seqlens_q=cu_seqlens_q,
615
+ cu_seqlens_k=cu_seqlens_k,
616
+ max_seqlen_q=max_seqlen_in_batch_q,
617
+ max_seqlen_k=max_seqlen_in_batch_k,
618
+ dropout_p=dropout,
619
+ softmax_scale=softmax_scale,
620
+ causal=causal,
621
+ )
622
+
623
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
624
+ else:
625
+ attn_output = flash_attn_func(
626
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
627
+ )
628
+
629
+ return attn_output
630
+
631
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
632
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
633
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
634
+
635
+ key_layer = index_first_axis(
636
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
637
+ )
638
+ value_layer = index_first_axis(
639
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
640
+ )
641
+ if query_length == kv_seq_len:
642
+ query_layer = index_first_axis(
643
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
644
+ )
645
+ cu_seqlens_q = cu_seqlens_k
646
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
647
+ indices_q = indices_k
648
+ elif query_length == 1:
649
+ max_seqlen_in_batch_q = 1
650
+ cu_seqlens_q = torch.arange(
651
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
652
+ ) # There is a memcpy here, that is very bad.
653
+ indices_q = cu_seqlens_q[:-1]
654
+ query_layer = query_layer.squeeze(1)
655
+ else:
656
+ # The -q_len: slice assumes left padding.
657
+ attention_mask = attention_mask[:, -query_length:]
658
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
659
+
660
+ return (
661
+ query_layer,
662
+ key_layer,
663
+ value_layer,
664
+ indices_q,
665
+ (cu_seqlens_q, cu_seqlens_k),
666
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
667
+ )
668
+
669
+
670
+ class LlamaSdpaAttention(LlamaAttention):
671
+ """
672
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
673
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
674
+ SDPA API.
675
+ """
676
+
677
+ # Adapted from LlamaAttention.forward
678
+ def forward(
679
+ self,
680
+ hidden_states: torch.Tensor,
681
+ attention_mask: Optional[torch.Tensor] = None,
682
+ position_ids: Optional[torch.LongTensor] = None,
683
+ past_key_value: Optional[Cache] = None,
684
+ output_attentions: bool = False,
685
+ use_cache: bool = False,
686
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
687
+ if output_attentions:
688
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
689
+ logger.warning_once(
690
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
691
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
692
+ )
693
+ return super().forward(
694
+ hidden_states=hidden_states,
695
+ attention_mask=attention_mask,
696
+ position_ids=position_ids,
697
+ past_key_value=past_key_value,
698
+ output_attentions=output_attentions,
699
+ use_cache=use_cache,
700
+ )
701
+
702
+ bsz, q_len, _ = hidden_states.size()
703
+
704
+ query_states = self.q_proj(hidden_states)
705
+ key_states = self.k_proj(hidden_states)
706
+ value_states = self.v_proj(hidden_states)
707
+
708
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
709
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
710
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
711
+
712
+ kv_seq_len = key_states.shape[-2]
713
+ if past_key_value is not None:
714
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
715
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
716
+
717
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
718
+
719
+ if past_key_value is not None:
720
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
721
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
722
+
723
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
724
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
725
+
726
+ if attention_mask is not None:
727
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
728
+ raise ValueError(
729
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
730
+ )
731
+
732
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
733
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
734
+ if query_states.device.type == "cuda" and attention_mask is not None:
735
+ query_states = query_states.contiguous()
736
+ key_states = key_states.contiguous()
737
+ value_states = value_states.contiguous()
738
+
739
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
740
+ query_states,
741
+ key_states,
742
+ value_states,
743
+ attn_mask=attention_mask,
744
+ dropout_p=self.attention_dropout if self.training else 0.0,
745
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
746
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
747
+ )
748
+
749
+ attn_output = attn_output.transpose(1, 2).contiguous()
750
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
751
+
752
+ attn_output = self.o_proj(attn_output)
753
+
754
+ return attn_output, None, past_key_value
755
+
756
+
757
+ LLAMA_ATTENTION_CLASSES = {
758
+ "eager": LlamaAttention,
759
+ "flash_attention_2": LlamaFlashAttention2,
760
+ "sdpa": LlamaSdpaAttention,
761
+ }
762
+
763
+
764
+ class LlamaDecoderLayer(nn.Module):
765
+ def __init__(self, config: LlamaConfig, layer_idx: int):
766
+ super().__init__()
767
+ self.hidden_size = config.hidden_size
768
+
769
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
770
+
771
+ self.mlp = LlamaMLP(config)
772
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
773
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
774
+
775
+ #################
776
+ ## TruthX Code ##
777
+ #################
778
+ self.inner={}
779
+
780
+ def forward(
781
+ self,
782
+ hidden_states: torch.Tensor,
783
+ attention_mask: Optional[torch.Tensor] = None,
784
+ position_ids: Optional[torch.LongTensor] = None,
785
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
786
+ output_attentions: Optional[bool] = False,
787
+ use_cache: Optional[bool] = False,
788
+ truthx_model=None,
789
+ idx=None,
790
+ **kwargs,
791
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
792
+ """
793
+ Args:
794
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
795
+ attention_mask (`torch.FloatTensor`, *optional*):
796
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
797
+ query_sequence_length, key_sequence_length)` if default attention is used.
798
+ output_attentions (`bool`, *optional*):
799
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
800
+ returned tensors for more detail.
801
+ use_cache (`bool`, *optional*):
802
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
803
+ (see `past_key_values`).
804
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
805
+ """
806
+ if "padding_mask" in kwargs:
807
+ warnings.warn(
808
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
809
+ )
810
+
811
+ residual = hidden_states
812
+
813
+ hidden_states = self.input_layernorm(hidden_states)
814
+
815
+ #################
816
+ ## TruthX Code ##
817
+ #################
818
+ if truthx_model is not None:
819
+ truthx_model.cur_layer_id=f"{idx}.attn"
820
+
821
+ # Self Attention
822
+ hidden_states, self_attn_weights, present_key_value ,_attn_output= self.self_attn(
823
+ hidden_states=hidden_states,
824
+ attention_mask=attention_mask,
825
+ position_ids=position_ids,
826
+ past_key_value=past_key_value,
827
+ output_attentions=output_attentions,
828
+ use_cache=use_cache,
829
+ truthx_model=truthx_model,
830
+ **kwargs,
831
+ )
832
+ hidden_states = residual + hidden_states
833
+
834
+
835
+ #################
836
+ ## TruthX Code ##
837
+ #################
838
+ self.inner['attn']=hidden_states
839
+ self.inner['_attn']=_attn_output
840
+
841
+ # Fully Connected
842
+ residual = hidden_states
843
+ hidden_states = self.post_attention_layernorm(hidden_states)
844
+ hidden_states = self.mlp(hidden_states)
845
+
846
+
847
+
848
+ #################
849
+ ## TruthX Code ##
850
+ #################
851
+ _hidden_states=hidden_states.contiguous()
852
+ hidden_states = residual + hidden_states
853
+
854
+ if truthx_model is not None:
855
+ truthx_model.cur_layer_id=f"{idx}.ffn"
856
+ hidden_states=residual+truthx_model.edit(_hidden_states)
857
+
858
+ self.inner['ffn']=hidden_states
859
+ self.inner['_ffn']=_hidden_states
860
+
861
+ outputs = (hidden_states,)
862
+
863
+ if output_attentions:
864
+ outputs += (self_attn_weights,)
865
+
866
+ if use_cache:
867
+ outputs += (present_key_value,)
868
+
869
+ return outputs
870
+
871
+
872
+ LLAMA_START_DOCSTRING = r"""
873
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
874
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
875
+ etc.)
876
+
877
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
878
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
879
+ and behavior.
880
+
881
+ Parameters:
882
+ config ([`LlamaConfig`]):
883
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
884
+ load the weights associated with the model, only the configuration. Check out the
885
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
886
+ """
887
+
888
+
889
+ @add_start_docstrings(
890
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
891
+ LLAMA_START_DOCSTRING,
892
+ )
893
+ class LlamaPreTrainedModel(PreTrainedModel):
894
+ config_class = LlamaConfig
895
+ base_model_prefix = "model"
896
+ supports_gradient_checkpointing = True
897
+ _no_split_modules = ["LlamaDecoderLayer"]
898
+ _skip_keys_device_placement = "past_key_values"
899
+ _supports_flash_attn_2 = True
900
+ _supports_sdpa = True
901
+ _supports_cache_class = True
902
+
903
+ def _init_weights(self, module):
904
+ std = self.config.initializer_range
905
+ if isinstance(module, nn.Linear):
906
+ module.weight.data.normal_(mean=0.0, std=std)
907
+ if module.bias is not None:
908
+ module.bias.data.zero_()
909
+ elif isinstance(module, nn.Embedding):
910
+ module.weight.data.normal_(mean=0.0, std=std)
911
+ if module.padding_idx is not None:
912
+ module.weight.data[module.padding_idx].zero_()
913
+
914
+
915
+ LLAMA_INPUTS_DOCSTRING = r"""
916
+ Args:
917
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
918
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
919
+ it.
920
+
921
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
922
+ [`PreTrainedTokenizer.__call__`] for details.
923
+
924
+ [What are input IDs?](../glossary#input-ids)
925
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
926
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
927
+
928
+ - 1 for tokens that are **not masked**,
929
+ - 0 for tokens that are **masked**.
930
+
931
+ [What are attention masks?](../glossary#attention-mask)
932
+
933
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
934
+ [`PreTrainedTokenizer.__call__`] for details.
935
+
936
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
937
+ `past_key_values`).
938
+
939
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
940
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
941
+ information on the default strategy.
942
+
943
+ - 1 indicates the head is **not masked**,
944
+ - 0 indicates the head is **masked**.
945
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
946
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
947
+ config.n_positions - 1]`.
948
+
949
+ [What are position IDs?](../glossary#position-ids)
950
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
951
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
952
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
953
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
954
+
955
+ Two formats are allowed:
956
+ - a [`~cache_utils.Cache`] instance;
957
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
958
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
959
+ cache format.
960
+
961
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
962
+ legacy cache format will be returned.
963
+
964
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
965
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
966
+ of shape `(batch_size, sequence_length)`.
967
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
968
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
969
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
970
+ model's internal embedding lookup matrix.
971
+ use_cache (`bool`, *optional*):
972
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
973
+ `past_key_values`).
974
+ output_attentions (`bool`, *optional*):
975
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
976
+ tensors for more detail.
977
+ output_hidden_states (`bool`, *optional*):
978
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
979
+ more detail.
980
+ return_dict (`bool`, *optional*):
981
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
982
+ """
983
+
984
+
985
+ @add_start_docstrings(
986
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
987
+ LLAMA_START_DOCSTRING,
988
+ )
989
+ class LlamaModel(LlamaPreTrainedModel):
990
+ """
991
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
992
+
993
+ Args:
994
+ config: LlamaConfig
995
+ """
996
+
997
+ def __init__(self, config: LlamaConfig):
998
+ super().__init__(config)
999
+ self.padding_idx = config.pad_token_id
1000
+ self.vocab_size = config.vocab_size
1001
+
1002
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1003
+ self.layers = nn.ModuleList(
1004
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1005
+ )
1006
+ self._use_sdpa = config._attn_implementation == "sdpa"
1007
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1008
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1009
+
1010
+ self.gradient_checkpointing = False
1011
+ # Initialize weights and apply final processing
1012
+ self.post_init()
1013
+
1014
+ def get_input_embeddings(self):
1015
+ return self.embed_tokens
1016
+
1017
+ def set_input_embeddings(self, value):
1018
+ self.embed_tokens = value
1019
+
1020
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1021
+ def forward(
1022
+ self,
1023
+ input_ids: torch.LongTensor = None,
1024
+ attention_mask: Optional[torch.Tensor] = None,
1025
+ position_ids: Optional[torch.LongTensor] = None,
1026
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1027
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1028
+ use_cache: Optional[bool] = None,
1029
+ output_attentions: Optional[bool] = None,
1030
+ output_hidden_states: Optional[bool] = None,
1031
+ return_dict: Optional[bool] = None,
1032
+ truthx_model=None,
1033
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1034
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1035
+ output_hidden_states = (
1036
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1037
+ )
1038
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1039
+
1040
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1041
+
1042
+ # retrieve input_ids and inputs_embeds
1043
+ if input_ids is not None and inputs_embeds is not None:
1044
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1045
+ elif input_ids is not None:
1046
+ batch_size, seq_length = input_ids.shape[:2]
1047
+ elif inputs_embeds is not None:
1048
+ batch_size, seq_length = inputs_embeds.shape[:2]
1049
+ else:
1050
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1051
+
1052
+ if self.gradient_checkpointing and self.training:
1053
+ if use_cache:
1054
+ logger.warning_once(
1055
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1056
+ )
1057
+ use_cache = False
1058
+
1059
+ past_key_values_length = 0
1060
+ if use_cache:
1061
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1062
+ if use_legacy_cache:
1063
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1064
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1065
+
1066
+ if position_ids is None:
1067
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1068
+ position_ids = torch.arange(
1069
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1070
+ )
1071
+ position_ids = position_ids.unsqueeze(0)
1072
+
1073
+ if inputs_embeds is None:
1074
+ inputs_embeds = self.embed_tokens(input_ids)
1075
+
1076
+ if self._use_flash_attention_2:
1077
+ # 2d mask is passed through the layers
1078
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1079
+ elif self._use_sdpa and not output_attentions:
1080
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1081
+ # the manual implementation that requires a 4D causal mask in all cases.
1082
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1083
+ attention_mask,
1084
+ (batch_size, seq_length),
1085
+ inputs_embeds,
1086
+ past_key_values_length,
1087
+ )
1088
+ else:
1089
+ # 4d mask is passed through the layers
1090
+ attention_mask = _prepare_4d_causal_attention_mask(
1091
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1092
+ )
1093
+
1094
+ # embed positions
1095
+ hidden_states = inputs_embeds
1096
+
1097
+ # decoder layers
1098
+ all_hidden_states = () if output_hidden_states else None
1099
+ all_self_attns = () if output_attentions else None
1100
+ next_decoder_cache = None
1101
+
1102
+ #################
1103
+ ## TruthX Code ##
1104
+ #################
1105
+ idx=0
1106
+ for decoder_layer in self.layers:
1107
+ if output_hidden_states:
1108
+ all_hidden_states += (hidden_states,)
1109
+
1110
+ if self.gradient_checkpointing and self.training:
1111
+ layer_outputs = self._gradient_checkpointing_func(
1112
+ decoder_layer.__call__,
1113
+ hidden_states,
1114
+ attention_mask,
1115
+ position_ids,
1116
+ past_key_values,
1117
+ output_attentions,
1118
+ use_cache,
1119
+ )
1120
+ else:
1121
+ #################
1122
+ ## TruthX Code ##
1123
+ #################
1124
+ layer_outputs = decoder_layer(
1125
+ hidden_states,
1126
+ attention_mask=attention_mask,
1127
+ position_ids=position_ids,
1128
+ past_key_value=past_key_values,
1129
+ output_attentions=output_attentions,
1130
+ use_cache=use_cache,
1131
+ truthx_model=truthx_model,
1132
+ idx=idx,
1133
+ )
1134
+
1135
+ hidden_states = layer_outputs[0]
1136
+
1137
+ if use_cache:
1138
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1139
+
1140
+ if output_attentions:
1141
+ all_self_attns += (layer_outputs[1],)
1142
+
1143
+ idx+=1
1144
+
1145
+ hidden_states = self.norm(hidden_states)
1146
+
1147
+ # add hidden states from the last decoder layer
1148
+ if output_hidden_states:
1149
+ all_hidden_states += (hidden_states,)
1150
+
1151
+ next_cache = None
1152
+ if use_cache:
1153
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1154
+ if not return_dict:
1155
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1156
+ return BaseModelOutputWithPast(
1157
+ last_hidden_state=hidden_states,
1158
+ past_key_values=next_cache,
1159
+ hidden_states=all_hidden_states,
1160
+ attentions=all_self_attns,
1161
+ )
1162
+
1163
+
1164
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1165
+ _tied_weights_keys = ["lm_head.weight"]
1166
+
1167
+
1168
+ def __init__(self, config):
1169
+ super().__init__(config)
1170
+ self.model = LlamaModel(config)
1171
+ self.vocab_size = config.vocab_size
1172
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1173
+
1174
+
1175
+ self.truthx_model=None
1176
+ # from pathlib import Path
1177
+ self.config=config
1178
+ # Initialize weights and apply final processing
1179
+ self.post_init()
1180
+
1181
+
1182
+ def set_truthx_params(self, params):
1183
+ if self.truthx_model is None:
1184
+ from pathlib import Path
1185
+ truthx_model_path=Path(self.config._name_or_path)/self.config.truthx_config["path"]
1186
+
1187
+ self.truthx_model=TruthX(truthx_model_path,self.config.hidden_size)
1188
+ print(self.truthx_model)
1189
+ if 'top_layers' in params.keys():
1190
+ self.truthx_model.top_layers=params['top_layers']
1191
+ if 'edit_strength' in params.keys():
1192
+ self.truthx_model.edit_strength=params['edit_strength']
1193
+ if 'mc' in params.keys():
1194
+ self.truthx_model.mc=params['mc']
1195
+ if 'prompt_length' in params.keys():
1196
+ self.truthx_model.prompt_length=params['prompt_length']
1197
+
1198
+ # print("Set truthx param:",self.truthx_model.top_layers,self.truthx_model.edit_strength)
1199
+
1200
+ def get_input_embeddings(self):
1201
+ return self.model.embed_tokens
1202
+
1203
+ def set_input_embeddings(self, value):
1204
+ self.model.embed_tokens = value
1205
+
1206
+ def get_output_embeddings(self):
1207
+ return self.lm_head
1208
+
1209
+ def set_output_embeddings(self, new_embeddings):
1210
+ self.lm_head = new_embeddings
1211
+
1212
+ def set_decoder(self, decoder):
1213
+ self.model = decoder
1214
+
1215
+ def get_decoder(self):
1216
+ return self.model
1217
+
1218
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1219
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1220
+ def forward(
1221
+ self,
1222
+ input_ids: torch.LongTensor = None,
1223
+ attention_mask: Optional[torch.Tensor] = None,
1224
+ position_ids: Optional[torch.LongTensor] = None,
1225
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1226
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1227
+ labels: Optional[torch.LongTensor] = None,
1228
+ use_cache: Optional[bool] = None,
1229
+ output_attentions: Optional[bool] = None,
1230
+ output_hidden_states: Optional[bool] = None,
1231
+ return_dict: Optional[bool] = None,
1232
+ truthx_model=None,
1233
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1234
+ r"""
1235
+ Args:
1236
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1237
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1238
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1239
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1240
+
1241
+ Returns:
1242
+
1243
+ Example:
1244
+
1245
+ ```python
1246
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1247
+
1248
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1249
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1250
+
1251
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1252
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1253
+
1254
+ >>> # Generate
1255
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1256
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1257
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1258
+ ```"""
1259
+
1260
+ if self.truthx_model is None:
1261
+ from pathlib import Path
1262
+ truthx_model_path=Path(self.config._name_or_path)/self.config.truthx_config["path"]
1263
+ self.truthx_model=TruthX(truthx_model_path,self.config.hidden_size)
1264
+ # print(self.truthx_model)
1265
+
1266
+
1267
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1268
+ output_hidden_states = (
1269
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1270
+ )
1271
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1272
+
1273
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1274
+ outputs = self.model(
1275
+ input_ids=input_ids,
1276
+ attention_mask=attention_mask,
1277
+ position_ids=position_ids,
1278
+ past_key_values=past_key_values,
1279
+ inputs_embeds=inputs_embeds,
1280
+ use_cache=use_cache,
1281
+ output_attentions=output_attentions,
1282
+ output_hidden_states=output_hidden_states,
1283
+ return_dict=return_dict,
1284
+ truthx_model=self.truthx_model if truthx_model is None else truthx_model,
1285
+ )
1286
+
1287
+ hidden_states = outputs[0]
1288
+ if self.config.pretraining_tp > 1:
1289
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1290
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1291
+ logits = torch.cat(logits, dim=-1)
1292
+ else:
1293
+ logits = self.lm_head(hidden_states)
1294
+ logits = logits.float()
1295
+
1296
+ loss = None
1297
+ if labels is not None:
1298
+ # Shift so that tokens < n predict n
1299
+ shift_logits = logits[..., :-1, :].contiguous()
1300
+ shift_labels = labels[..., 1:].contiguous()
1301
+ # Flatten the tokens
1302
+ loss_fct = CrossEntropyLoss()
1303
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1304
+ shift_labels = shift_labels.view(-1)
1305
+ # Enable model parallelism
1306
+ shift_labels = shift_labels.to(shift_logits.device)
1307
+ loss = loss_fct(shift_logits, shift_labels)
1308
+
1309
+ if not return_dict:
1310
+ output = (logits,) + outputs[1:]
1311
+ return (loss,) + output if loss is not None else output
1312
+
1313
+ return CausalLMOutputWithPast(
1314
+ loss=loss,
1315
+ logits=logits,
1316
+ past_key_values=outputs.past_key_values,
1317
+ hidden_states=outputs.hidden_states,
1318
+ attentions=outputs.attentions,
1319
+ )
1320
+
1321
+ def prepare_inputs_for_generation(
1322
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1323
+ ):
1324
+ if past_key_values is not None:
1325
+ if isinstance(past_key_values, Cache):
1326
+ cache_length = past_key_values.get_seq_length()
1327
+ past_length = past_key_values.seen_tokens
1328
+ max_cache_length = past_key_values.get_max_length()
1329
+ else:
1330
+ cache_length = past_length = past_key_values[0][0].shape[2]
1331
+ max_cache_length = None
1332
+
1333
+ # Keep only the unprocessed tokens:
1334
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1335
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1336
+ # input)
1337
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1338
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1339
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1340
+ # input_ids based on the past_length.
1341
+ elif past_length < input_ids.shape[1]:
1342
+ input_ids = input_ids[:, past_length:]
1343
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1344
+
1345
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1346
+ if (
1347
+ max_cache_length is not None
1348
+ and attention_mask is not None
1349
+ and cache_length + input_ids.shape[1] > max_cache_length
1350
+ ):
1351
+ attention_mask = attention_mask[:, -max_cache_length:]
1352
+
1353
+ position_ids = kwargs.get("position_ids", None)
1354
+ if attention_mask is not None and position_ids is None:
1355
+ # create position_ids on the fly for batch generation
1356
+ position_ids = attention_mask.long().cumsum(-1) - 1
1357
+ position_ids.masked_fill_(attention_mask == 0, 1)
1358
+ if past_key_values:
1359
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1360
+
1361
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1362
+ if inputs_embeds is not None and past_key_values is None:
1363
+ model_inputs = {"inputs_embeds": inputs_embeds}
1364
+ else:
1365
+ model_inputs = {"input_ids": input_ids}
1366
+
1367
+ model_inputs.update(
1368
+ {
1369
+ "position_ids": position_ids,
1370
+ "past_key_values": past_key_values,
1371
+ "use_cache": kwargs.get("use_cache"),
1372
+ "attention_mask": attention_mask,
1373
+ }
1374
+ )
1375
+
1376
+ #################
1377
+ ## TruthX Code ##
1378
+ #################
1379
+ if 'truthx_model' in kwargs.keys():
1380
+ model_inputs.update(
1381
+ {
1382
+ "truthx_model": kwargs.get("truthx_model")
1383
+ }
1384
+ )
1385
+ return model_inputs
1386
+
1387
+ @staticmethod
1388
+ def _reorder_cache(past_key_values, beam_idx):
1389
+ reordered_past = ()
1390
+ for layer_past in past_key_values:
1391
+ reordered_past += (
1392
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1393
+ )
1394
+ return reordered_past
1395
+
1396
+
1397
+ @add_start_docstrings(
1398
+ """
1399
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1400
+
1401
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1402
+ (e.g. GPT-2) do.
1403
+
1404
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1405
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1406
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1407
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1408
+ each row of the batch).
1409
+ """,
1410
+ LLAMA_START_DOCSTRING,
1411
+ )
1412
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1413
+ def __init__(self, config):
1414
+ super().__init__(config)
1415
+ self.num_labels = config.num_labels
1416
+ self.model = LlamaModel(config)
1417
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1418
+
1419
+ # Initialize weights and apply final processing
1420
+ self.post_init()
1421
+
1422
+ def get_input_embeddings(self):
1423
+ return self.model.embed_tokens
1424
+
1425
+ def set_input_embeddings(self, value):
1426
+ self.model.embed_tokens = value
1427
+
1428
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1429
+ def forward(
1430
+ self,
1431
+ input_ids: torch.LongTensor = None,
1432
+ attention_mask: Optional[torch.Tensor] = None,
1433
+ position_ids: Optional[torch.LongTensor] = None,
1434
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1435
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1436
+ labels: Optional[torch.LongTensor] = None,
1437
+ use_cache: Optional[bool] = None,
1438
+ output_attentions: Optional[bool] = None,
1439
+ output_hidden_states: Optional[bool] = None,
1440
+ return_dict: Optional[bool] = None,
1441
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1442
+ r"""
1443
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1444
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1445
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1446
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1447
+ """
1448
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1449
+
1450
+ transformer_outputs = self.model(
1451
+ input_ids,
1452
+ attention_mask=attention_mask,
1453
+ position_ids=position_ids,
1454
+ past_key_values=past_key_values,
1455
+ inputs_embeds=inputs_embeds,
1456
+ use_cache=use_cache,
1457
+ output_attentions=output_attentions,
1458
+ output_hidden_states=output_hidden_states,
1459
+ return_dict=return_dict,
1460
+ )
1461
+ hidden_states = transformer_outputs[0]
1462
+ logits = self.score(hidden_states)
1463
+
1464
+ if input_ids is not None:
1465
+ batch_size = input_ids.shape[0]
1466
+ else:
1467
+ batch_size = inputs_embeds.shape[0]
1468
+
1469
+ if self.config.pad_token_id is None and batch_size != 1:
1470
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1471
+ if self.config.pad_token_id is None:
1472
+ sequence_lengths = -1
1473
+ else:
1474
+ if input_ids is not None:
1475
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1476
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1477
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1478
+ sequence_lengths = sequence_lengths.to(logits.device)
1479
+ else:
1480
+ sequence_lengths = -1
1481
+
1482
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1483
+
1484
+ loss = None
1485
+ if labels is not None:
1486
+ labels = labels.to(logits.device)
1487
+ if self.config.problem_type is None:
1488
+ if self.num_labels == 1:
1489
+ self.config.problem_type = "regression"
1490
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1491
+ self.config.problem_type = "single_label_classification"
1492
+ else:
1493
+ self.config.problem_type = "multi_label_classification"
1494
+
1495
+ if self.config.problem_type == "regression":
1496
+ loss_fct = MSELoss()
1497
+ if self.num_labels == 1:
1498
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1499
+ else:
1500
+ loss = loss_fct(pooled_logits, labels)
1501
+ elif self.config.problem_type == "single_label_classification":
1502
+ loss_fct = CrossEntropyLoss()
1503
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1504
+ elif self.config.problem_type == "multi_label_classification":
1505
+ loss_fct = BCEWithLogitsLoss()
1506
+ loss = loss_fct(pooled_logits, labels)
1507
+ if not return_dict:
1508
+ output = (pooled_logits,) + transformer_outputs[1:]
1509
+ return ((loss,) + output) if loss is not None else output
1510
+
1511
+ return SequenceClassifierOutputWithPast(
1512
+ loss=loss,
1513
+ logits=pooled_logits,
1514
+ past_key_values=transformer_outputs.past_key_values,
1515
+ hidden_states=transformer_outputs.hidden_states,
1516
+ attentions=transformer_outputs.attentions,
1517
+ )
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f917a253ef631128743798d284a7e7a5a22ac1ad23ecd6a9da57550348317f5
3
+ size 9976634558
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e8fc22b2c138439c6bafb7331ac139585e683005407e016feb18a4feea18417
3
+ size 3500315539
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476839424
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
329
+ }
330
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenization_llama.py ADDED
@@ -0,0 +1,472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for LLaMA."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from ...convert_slow_tokenizer import import_protobuf
29
+ from ...tokenization_utils import AddedToken, PreTrainedTokenizer
30
+ from ...utils import logging
31
+
32
+
33
+ if TYPE_CHECKING:
34
+ from ...tokenization_utils_base import TextInput
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
39
+
40
+ PRETRAINED_VOCAB_FILES_MAP = {
41
+ "vocab_file": {
42
+ "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
43
+ },
44
+ "tokenizer_file": {
45
+ "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
46
+ },
47
+ }
48
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
49
+ "hf-internal-testing/llama-tokenizer": 2048,
50
+ }
51
+ SPIECE_UNDERLINE = "▁"
52
+
53
+ B_INST, E_INST = "[INST]", "[/INST]"
54
+ B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
55
+
56
+ # fmt: off
57
+ DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
58
+ answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
59
+ that your responses are socially unbiased and positive in nature.
60
+
61
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
62
+ correct. If you don't know the answer to a question, please don't share false information."""
63
+ # fmt: on
64
+
65
+
66
+ class LlamaTokenizer(PreTrainedTokenizer):
67
+ """
68
+ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
69
+ no padding token in the original model.
70
+
71
+ Args:
72
+ vocab_file (`str`):
73
+ Path to the vocabulary file.
74
+ unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
75
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
76
+ token instead.
77
+ bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
78
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
79
+ eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
80
+ The end of sequence token.
81
+ pad_token (`str` or `tokenizers.AddedToken`, *optional*):
82
+ A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
83
+ attention mechanisms or loss computation.
84
+ sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
85
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
86
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
87
+ to set:
88
+
89
+ - `enable_sampling`: Enable subword regularization.
90
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
91
+
92
+ - `nbest_size = {0,1}`: No sampling is performed.
93
+ - `nbest_size > 1`: samples from the nbest_size results.
94
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
95
+ using forward-filtering-and-backward-sampling algorithm.
96
+
97
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
98
+ BPE-dropout.
99
+
100
+ add_bos_token (`bool`, *optional*, defaults to `True`):
101
+ Whether or not to add an `bos_token` at the start of sequences.
102
+ add_eos_token (`bool`, *optional*, defaults to `False`):
103
+ Whether or not to add an `eos_token` at the end of sequences.
104
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
105
+ Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
106
+ extra spaces.
107
+ use_default_system_prompt (`bool`, *optional*, defaults to `False`):
108
+ Whether or not the default system prompt for Llama should be used.
109
+ spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
110
+ Whether or not to add spaces between special tokens.
111
+ legacy (`bool`, *optional*):
112
+ Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
113
+ and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple
114
+ example:
115
+
116
+ - `legacy=True`:
117
+ ```python
118
+ >>> from transformers import T5Tokenizer
119
+
120
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True)
121
+ >>> tokenizer.encode("Hello <extra_id_0>.")
122
+ [8774, 32099, 3, 5, 1]
123
+ ```
124
+ - `legacy=False`:
125
+ ```python
126
+ >>> from transformers import T5Tokenizer
127
+
128
+ >>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)
129
+ >>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
130
+ [8774, 32099, 5, 1]
131
+ ```
132
+ Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
133
+
134
+ """
135
+
136
+ vocab_files_names = VOCAB_FILES_NAMES
137
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
138
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
139
+ model_input_names = ["input_ids", "attention_mask"]
140
+
141
+ def __init__(
142
+ self,
143
+ vocab_file,
144
+ unk_token="<unk>",
145
+ bos_token="<s>",
146
+ eos_token="</s>",
147
+ pad_token=None,
148
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
149
+ add_bos_token=True,
150
+ add_eos_token=False,
151
+ clean_up_tokenization_spaces=False,
152
+ use_default_system_prompt=False,
153
+ spaces_between_special_tokens=False,
154
+ legacy=None,
155
+ **kwargs,
156
+ ):
157
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
158
+ bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
159
+ eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
160
+ unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
161
+ pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
162
+
163
+ if legacy is None:
164
+ logger.warning_once(
165
+ f"You are using the default legacy behaviour of the {self.__class__}. This is"
166
+ " expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
167
+ " If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
168
+ " means, and thoroughly read the reason why this was added as explained in"
169
+ " https://github.com/huggingface/transformers/pull/24565"
170
+ )
171
+ legacy = True
172
+
173
+ self.legacy = legacy
174
+ self.vocab_file = vocab_file
175
+ self.add_bos_token = add_bos_token
176
+ self.add_eos_token = add_eos_token
177
+ self.use_default_system_prompt = use_default_system_prompt
178
+ self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
179
+
180
+ super().__init__(
181
+ bos_token=bos_token,
182
+ eos_token=eos_token,
183
+ unk_token=unk_token,
184
+ pad_token=pad_token,
185
+ add_bos_token=add_bos_token,
186
+ add_eos_token=add_eos_token,
187
+ sp_model_kwargs=self.sp_model_kwargs,
188
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
189
+ use_default_system_prompt=use_default_system_prompt,
190
+ spaces_between_special_tokens=spaces_between_special_tokens,
191
+ legacy=legacy,
192
+ **kwargs,
193
+ )
194
+
195
+ @property
196
+ def unk_token_length(self):
197
+ return len(self.sp_model.encode(str(self.unk_token)))
198
+
199
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
200
+ def get_spm_processor(self, from_slow=False):
201
+ tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
202
+ if self.legacy or from_slow: # no dependency on protobuf
203
+ tokenizer.Load(self.vocab_file)
204
+ return tokenizer
205
+
206
+ with open(self.vocab_file, "rb") as f:
207
+ sp_model = f.read()
208
+ model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
209
+ model = model_pb2.ModelProto.FromString(sp_model)
210
+ normalizer_spec = model_pb2.NormalizerSpec()
211
+ normalizer_spec.add_dummy_prefix = False
212
+ model.normalizer_spec.MergeFrom(normalizer_spec)
213
+ sp_model = model.SerializeToString()
214
+ tokenizer.LoadFromSerializedProto(sp_model)
215
+ return tokenizer
216
+
217
+ def __getstate__(self):
218
+ state = self.__dict__.copy()
219
+ state["sp_model"] = None
220
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
221
+ return state
222
+
223
+ def __setstate__(self, d):
224
+ self.__dict__ = d
225
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
226
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
227
+
228
+ @property
229
+ def vocab_size(self):
230
+ """Returns vocab size"""
231
+ return self.sp_model.get_piece_size()
232
+
233
+ def get_vocab(self):
234
+ """Returns vocab as a dict"""
235
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
236
+ vocab.update(self.added_tokens_encoder)
237
+ return vocab
238
+
239
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
240
+ def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
241
+ """
242
+ Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
243
+ first token is special.
244
+ """
245
+ if self.legacy or len(text) == 0:
246
+ return super().tokenize(text, **kwargs)
247
+
248
+ tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
249
+
250
+ if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
251
+ tokens = tokens[1:]
252
+ return tokens
253
+
254
+ # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
255
+ def _tokenize(self, text, **kwargs):
256
+ """
257
+ Returns a tokenized string.
258
+
259
+ We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
260
+ SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
261
+ `['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
262
+ `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
263
+ `self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
264
+ """
265
+ tokens = self.sp_model.encode(text, out_type=str)
266
+ if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
267
+ return tokens
268
+
269
+ # 1. Encode string + prefix ex: "<unk> Hey"
270
+ tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
271
+ # 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
272
+ return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
273
+
274
+ def _convert_token_to_id(self, token):
275
+ """Converts a token (str) in an id using the vocab."""
276
+ return self.sp_model.piece_to_id(token)
277
+
278
+ def _convert_id_to_token(self, index):
279
+ """Converts an index (integer) in a token (str) using the vocab."""
280
+ token = self.sp_model.IdToPiece(index)
281
+ return token
282
+
283
+ def convert_tokens_to_string(self, tokens):
284
+ """Converts a sequence of tokens (string) in a single string."""
285
+ # since we manually add the prefix space, we have to remove it when decoding
286
+ if tokens[0].startswith(SPIECE_UNDERLINE):
287
+ tokens[0] = tokens[0][1:]
288
+
289
+ current_sub_tokens = []
290
+ out_string = ""
291
+ prev_is_special = False
292
+ for i, token in enumerate(tokens):
293
+ # make sure that special tokens are not decoded using sentencepiece model
294
+ if token in self.all_special_tokens:
295
+ if not prev_is_special and i != 0 and self.legacy:
296
+ out_string += " "
297
+ out_string += self.sp_model.decode(current_sub_tokens) + token
298
+ prev_is_special = True
299
+ current_sub_tokens = []
300
+ else:
301
+ current_sub_tokens.append(token)
302
+ prev_is_special = False
303
+ out_string += self.sp_model.decode(current_sub_tokens)
304
+ return out_string
305
+
306
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
307
+ """
308
+ Save the vocabulary and special tokens file to a directory.
309
+
310
+ Args:
311
+ save_directory (`str`):
312
+ The directory in which to save the vocabulary.
313
+
314
+ Returns:
315
+ `Tuple(str)`: Paths to the files saved.
316
+ """
317
+ if not os.path.isdir(save_directory):
318
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
319
+ return
320
+ out_vocab_file = os.path.join(
321
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
322
+ )
323
+
324
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
325
+ copyfile(self.vocab_file, out_vocab_file)
326
+ elif not os.path.isfile(self.vocab_file):
327
+ with open(out_vocab_file, "wb") as fi:
328
+ content_spiece_model = self.sp_model.serialized_model_proto()
329
+ fi.write(content_spiece_model)
330
+
331
+ return (out_vocab_file,)
332
+
333
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
334
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
335
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
336
+
337
+ output = bos_token_id + token_ids_0 + eos_token_id
338
+
339
+ if token_ids_1 is not None:
340
+ output = output + bos_token_id + token_ids_1 + eos_token_id
341
+
342
+ return output
343
+
344
+ def get_special_tokens_mask(
345
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
346
+ ) -> List[int]:
347
+ """
348
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
349
+ special tokens using the tokenizer `prepare_for_model` method.
350
+
351
+ Args:
352
+ token_ids_0 (`List[int]`):
353
+ List of IDs.
354
+ token_ids_1 (`List[int]`, *optional*):
355
+ Optional second list of IDs for sequence pairs.
356
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
357
+ Whether or not the token list is already formatted with special tokens for the model.
358
+
359
+ Returns:
360
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
361
+ """
362
+ if already_has_special_tokens:
363
+ return super().get_special_tokens_mask(
364
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
365
+ )
366
+
367
+ bos_token_id = [1] if self.add_bos_token else []
368
+ eos_token_id = [1] if self.add_eos_token else []
369
+
370
+ if token_ids_1 is None:
371
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
372
+ return (
373
+ bos_token_id
374
+ + ([0] * len(token_ids_0))
375
+ + eos_token_id
376
+ + bos_token_id
377
+ + ([0] * len(token_ids_1))
378
+ + eos_token_id
379
+ )
380
+
381
+ def create_token_type_ids_from_sequences(
382
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
383
+ ) -> List[int]:
384
+ """
385
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
386
+ sequence pair mask has the following format:
387
+
388
+ ```
389
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
390
+ | first sequence | second sequence |
391
+ ```
392
+
393
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
394
+
395
+ Args:
396
+ token_ids_0 (`List[int]`):
397
+ List of ids.
398
+ token_ids_1 (`List[int]`, *optional*):
399
+ Optional second list of IDs for sequence pairs.
400
+
401
+ Returns:
402
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
403
+ """
404
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
405
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
406
+
407
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
408
+
409
+ if token_ids_1 is not None:
410
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
411
+
412
+ return output
413
+
414
+ @property
415
+ def default_chat_template(self):
416
+ """
417
+ LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
418
+ Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
419
+ user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
420
+ rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
421
+ results in an unusual token ordering when it is present. This template should definitely be changed if you wish
422
+ to fine-tune a model with more flexible role ordering!
423
+
424
+ The output should look something like:
425
+
426
+ <bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
427
+ <bos>[INST] Prompt [/INST]
428
+
429
+ The reference for this chat template is [this code
430
+ snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
431
+ in the original repository.
432
+ """
433
+ logger.warning_once(
434
+ "\nNo chat template is defined for this tokenizer - using the default template "
435
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
436
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
437
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
438
+ )
439
+ template = (
440
+ "{% if messages[0]['role'] == 'system' %}"
441
+ "{% set loop_messages = messages[1:] %}" # Extract system message if it's present
442
+ "{% set system_message = messages[0]['content'] %}"
443
+ "{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
444
+ "{% set loop_messages = messages %}" # Or use the default system message if the flag is set
445
+ "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
446
+ "{% else %}"
447
+ "{% set loop_messages = messages %}"
448
+ "{% set system_message = false %}"
449
+ "{% endif %}"
450
+ "{% for message in loop_messages %}" # Loop over all non-system messages
451
+ "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
452
+ "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
453
+ "{% endif %}"
454
+ "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
455
+ "{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
456
+ "{% else %}"
457
+ "{% set content = message['content'] %}"
458
+ "{% endif %}"
459
+ "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
460
+ "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
461
+ "{% elif message['role'] == 'system' %}"
462
+ "{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
463
+ "{% elif message['role'] == 'assistant' %}"
464
+ "{{ ' ' + content.strip() + ' ' + eos_token }}"
465
+ "{% endif %}"
466
+ "{% endfor %}"
467
+ )
468
+ template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
469
+ default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
470
+ template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
471
+
472
+ return template
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
truthx.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+ from abc import abstractmethod
5
+ from torch import tensor as Tensor
6
+ from typing import List, Any
7
+
8
+
9
+ class BaseVAE(nn.Module):
10
+
11
+ def __init__(self) -> None:
12
+ super(BaseVAE, self).__init__()
13
+
14
+ def encode(self, input: Tensor) -> List[Tensor]:
15
+ raise NotImplementedError
16
+
17
+ def decode(self, input: Tensor) -> Any:
18
+ raise NotImplementedError
19
+
20
+ def sample(self, batch_size: int, current_device: int, **kwargs) -> Tensor:
21
+ raise NotImplementedError
22
+
23
+ def generate(self, x: Tensor, **kwargs) -> Tensor:
24
+ raise NotImplementedError
25
+
26
+ @abstractmethod
27
+ def forward(self, *inputs: Tensor) -> Tensor:
28
+ pass
29
+
30
+ @abstractmethod
31
+ def loss_function(self, *inputs: Any, **kwargs) -> Tensor:
32
+ pass
33
+
34
+
35
+ class MLPAE(BaseVAE):
36
+ def __init__(
37
+ self,
38
+ in_channels: int,
39
+ semantic_latent_dim: int,
40
+ truthful_latent_dim: int,
41
+ semantic_hidden_dims: List = None,
42
+ truthful_hidden_dims: List = None,
43
+ decoder_hidden_dims: List = None,
44
+ **kwargs
45
+ ) -> None:
46
+ super(MLPAE, self).__init__()
47
+
48
+ self.semantic_latent_dim = semantic_latent_dim
49
+
50
+ if semantic_hidden_dims is None:
51
+ semantic_hidden_dims = []
52
+
53
+ # Build Semantic Encoder
54
+ semantic_encoder_modules = []
55
+ flat_size = in_channels
56
+ for h_dim in semantic_hidden_dims:
57
+ semantic_encoder_modules.append(
58
+ nn.Sequential(
59
+ nn.Linear(flat_size, h_dim), nn.LayerNorm(h_dim), nn.LeakyReLU()
60
+ )
61
+ )
62
+ flat_size = h_dim
63
+ semantic_encoder_modules.append(
64
+ nn.Sequential(
65
+ nn.Linear(flat_size, semantic_latent_dim),
66
+ nn.LayerNorm(semantic_latent_dim),
67
+ nn.LeakyReLU(),
68
+ )
69
+ )
70
+
71
+ self.semantic_encoder = nn.Sequential(*semantic_encoder_modules)
72
+
73
+ if truthful_hidden_dims is None:
74
+ truthful_hidden_dims = []
75
+
76
+ # Build Truthful Encoder
77
+ truthful_encoder_modules = []
78
+ flat_size = in_channels
79
+ for h_dim in truthful_hidden_dims:
80
+ truthful_encoder_modules.append(
81
+ nn.Sequential(
82
+ (
83
+ nn.Linear(flat_size, h_dim)
84
+ if flat_size != h_dim
85
+ else nn.Identity()
86
+ ),
87
+ nn.LayerNorm(h_dim),
88
+ nn.LeakyReLU(),
89
+ )
90
+ )
91
+ flat_size = h_dim
92
+ truthful_encoder_modules.append(
93
+ nn.Sequential(
94
+ (
95
+ nn.Linear(flat_size, truthful_latent_dim)
96
+ if flat_size != truthful_latent_dim
97
+ else nn.Identity()
98
+ ),
99
+ nn.LayerNorm(truthful_latent_dim),
100
+ nn.LeakyReLU(),
101
+ )
102
+ )
103
+
104
+ self.truthful_encoder = nn.Sequential(*truthful_encoder_modules)
105
+
106
+ # Cross-Attention Module
107
+ self.num_heads = 1
108
+ self.cross_attention = nn.MultiheadAttention(
109
+ embed_dim=semantic_latent_dim, num_heads=self.num_heads
110
+ )
111
+
112
+ self.proj = None
113
+ if semantic_latent_dim != truthful_latent_dim:
114
+ self.proj = nn.Linear(truthful_latent_dim, semantic_latent_dim, bias=False)
115
+
116
+ # Build Decoder
117
+ decoder_modules = []
118
+ if len(decoder_hidden_dims) > 0:
119
+ flat_size = semantic_latent_dim
120
+ for h_dim in decoder_hidden_dims:
121
+ decoder_modules.append(
122
+ nn.Sequential(
123
+ nn.Linear(flat_size, h_dim), nn.LayerNorm(h_dim), nn.LeakyReLU()
124
+ )
125
+ )
126
+ flat_size = h_dim
127
+
128
+ flat_size = decoder_hidden_dims[-1]
129
+ self.decoder = nn.Sequential(*decoder_modules)
130
+ else:
131
+ self.decoder_input = None
132
+
133
+ self.decoder = None
134
+ flat_size = semantic_latent_dim
135
+ self.final_layer = nn.Sequential(nn.Linear(flat_size, in_channels))
136
+
137
+ def encode_semantic(self, input: Tensor) -> List[Tensor]:
138
+ semantic_latent_rep = self.semantic_encoder(input)
139
+ return semantic_latent_rep
140
+
141
+ def encode_truthful(self, input: Tensor) -> List[Tensor]:
142
+ truthful_latent_rep = self.truthful_encoder(input)
143
+ truthful_latent_rep = F.normalize(truthful_latent_rep, p=2, dim=-1)
144
+
145
+ return truthful_latent_rep
146
+
147
+ def attention(self, query: Tensor, key: Tensor, value: Tensor) -> Tensor:
148
+ if self.proj is not None and query.size(-1) != key.size(-1):
149
+ key = self.proj(key)
150
+ value = self.proj(value)
151
+ query = query.unsqueeze(0)
152
+ key = key.unsqueeze(0)
153
+ value = value.unsqueeze(0)
154
+
155
+ output, attention_weights = self.cross_attention(query, key, value)
156
+
157
+ return output[0]
158
+
159
+ def decode(self, z: Tensor) -> Tensor:
160
+ result = z
161
+ if self.decoder is not None:
162
+ result = self.decoder(result)
163
+ result = self.final_layer(result)
164
+ return result
165
+
166
+ def forward(
167
+ self, input: Tensor, truthful_latent_rep=None, **kwargs
168
+ ) -> List[Tensor]:
169
+ semantic_latent_rep = self.encode_semantic(input)
170
+ if truthful_latent_rep is None:
171
+ truthful_latent_rep = self.encode_truthful(input)
172
+ truthful_latent_rep = truthful_latent_rep.reshape(
173
+ -1, truthful_latent_rep.size(-1)
174
+ )
175
+ z = semantic_latent_rep + self.attention(
176
+ semantic_latent_rep,
177
+ truthful_latent_rep.contiguous(),
178
+ truthful_latent_rep.contiguous(),
179
+ )
180
+ output = self.decode(z)
181
+
182
+ return [output, input, semantic_latent_rep, truthful_latent_rep]
183
+
184
+ def forward_decoder(self, input, semantic_latent_rep, truthful_latent_rep):
185
+ z = semantic_latent_rep + self.attention(
186
+ semantic_latent_rep, truthful_latent_rep, truthful_latent_rep
187
+ )
188
+ output = self.decode(z)
189
+ return [output, input, semantic_latent_rep, truthful_latent_rep]
190
+
191
+ def get_semantic_latent_rep(self, input: Tensor, **kwargs) -> List[Tensor]:
192
+ semantic_latent_rep = self.encode_semantic(input)
193
+ return semantic_latent_rep
194
+
195
+ def get_truthful_latent_rep(self, input: Tensor, **kwargs) -> List[Tensor]:
196
+ truthful_latent_rep = self.encode_truthful(input)
197
+ return truthful_latent_rep
198
+
199
+ def loss_function(self, *args, **kwargs) -> dict:
200
+ recons = args[0]
201
+ input = args[1]
202
+ recons_loss = F.mse_loss(recons, input)
203
+
204
+ loss = recons_loss
205
+ return {"loss": loss, "Reconstruction_Loss": recons_loss.detach()}
206
+
207
+
208
+ class TruthX:
209
+ def __init__(self, model_path, hidden_size, edit_strength=1.0, top_layers=10):
210
+
211
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
212
+
213
+ checkpoint = torch.load(model_path)
214
+ args = checkpoint["args"]
215
+
216
+ semantic_latent_dim = args.semantic_latent_dim # Adjust as needed
217
+ truthful_latent_dim = args.truthful_latent_dim
218
+ semantic_hidden_dims = (
219
+ [int(_) for _ in args.semantic_hidden_dims.split(",")]
220
+ if args.semantic_hidden_dims != ""
221
+ else []
222
+ )
223
+ truthful_hidden_dims = (
224
+ [int(_) for _ in args.truthful_hidden_dims.split(",")]
225
+ if args.truthful_hidden_dims != ""
226
+ else []
227
+ )
228
+ decoder_hidden_dims = (
229
+ [int(_) for _ in args.decoder_hidden_dims.split(",")]
230
+ if args.decoder_hidden_dims != ""
231
+ else []
232
+ )
233
+
234
+ ae_model = MLPAE(
235
+ in_channels=hidden_size,
236
+ semantic_latent_dim=semantic_latent_dim,
237
+ truthful_latent_dim=truthful_latent_dim,
238
+ semantic_hidden_dims=semantic_hidden_dims,
239
+ truthful_hidden_dims=truthful_hidden_dims,
240
+ decoder_hidden_dims=decoder_hidden_dims,
241
+ ).to(device)
242
+
243
+ ae_model.load_state_dict(checkpoint["state_dict"])
244
+
245
+ ae_model.pos_center = ((checkpoint["pos_center"])).to(device)
246
+ ae_model.neg_center = ((checkpoint["neg_center"])).to(device)
247
+ ae_model.eval()
248
+ ae_model.to(device)
249
+ self.ae_model = ae_model
250
+
251
+ self.rank = checkpoint["rank"]
252
+
253
+ self.top_layers = top_layers
254
+ self.edit_strength = edit_strength
255
+ self.cur_layer_id = 0
256
+ self.prompt_length = None
257
+ self.mc = False
258
+
259
+ @torch.inference_mode()
260
+ def edit(self, X):
261
+ layer_id = int(self.cur_layer_id.split(".")[0])
262
+ if self.cur_layer_id.endswith("attn"):
263
+ layer_id = 2 * layer_id
264
+ else:
265
+ layer_id = 2 * layer_id + 1
266
+
267
+ if self.rank[layer_id] > self.top_layers:
268
+ return X
269
+
270
+ bsz, s_len, d = X.size()
271
+ x = (
272
+ X.contiguous()
273
+ .view(-1, d)
274
+ .type_as(self.ae_model.semantic_encoder[0][0].weight)
275
+ )
276
+ x_truthful = self.ae_model.get_truthful_latent_rep(
277
+ X.type_as(self.ae_model.semantic_encoder[0][0].weight)
278
+ )
279
+
280
+ pos_center = self.ae_model.pos_center[layer_id].unsqueeze(0)
281
+ neg_center = self.ae_model.neg_center[layer_id].unsqueeze(0)
282
+
283
+ delta = (pos_center - neg_center).unsqueeze(0)
284
+ recon_x_pos = (
285
+ self.ae_model(
286
+ x,
287
+ truthful_latent_rep=F.normalize(
288
+ x_truthful + delta, p=2, dim=-1
289
+ ).type_as(x),
290
+ )[0]
291
+ .contiguous()
292
+ .view(bsz, s_len, d)
293
+ )
294
+ recon_x_neg = (
295
+ self.ae_model(
296
+ x,
297
+ truthful_latent_rep=F.normalize(
298
+ x_truthful - delta, p=2, dim=-1
299
+ ).type_as(x),
300
+ )[0]
301
+ .contiguous()
302
+ .view(bsz, s_len, d)
303
+ )
304
+ Delta = recon_x_pos - recon_x_neg
305
+ Delta = Delta.contiguous().to(X.dtype)
306
+ Delta = F.normalize(Delta, p=2, dim=-1).type_as(X) * torch.norm(
307
+ X, p=2, dim=-1
308
+ ).unsqueeze(2)
309
+
310
+ mask = torch.ones((bsz, s_len), device=Delta.device)
311
+
312
+ if self.mc:
313
+ # multiple-choice, only edit the tokens in answer
314
+ mask[:, : self.prompt_length + 1] = 0
315
+ # probing those untruthful position
316
+ probing = (
317
+ torch.nn.functional.cosine_similarity(
318
+ x_truthful, neg_center.unsqueeze(1), dim=-1
319
+ )
320
+ - torch.nn.functional.cosine_similarity(
321
+ x_truthful, pos_center.unsqueeze(1), dim=-1
322
+ )
323
+ ).clamp(0, 999)
324
+ mask = mask * probing
325
+
326
+ else:
327
+ # open-ended generation, only edit the generated token (i.e., last token)
328
+ mask[:, :-1] = 0
329
+ mask[:, -1:] = 1
330
+
331
+ new_X = X + (Delta.type_as(X)) * self.edit_strength * mask.unsqueeze(2).type_as(X)
332
+ return new_X
truthx_model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fa2e743f8551f3c449c741a74c670d1a6121f50a40073a0ef9eac7cddc48b84
3
+ size 143270759