File size: 3,590 Bytes
f73e34c
bcae2a8
 
f73e34c
bcae2a8
 
 
 
 
 
 
 
 
 
 
f73e34c
20041e9
bcae2a8
20041e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a684033
bcae2a8
 
 
 
a684033
bcae2a8
 
 
 
 
 
 
 
20041e9
 
 
 
 
 
 
 
 
 
 
 
 
 
bcae2a8
20041e9
 
 
 
 
 
bcae2a8
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
language: 
  - zh
license: apache-2.0

tags:
- bert
- NLU
- NLI

inference: true

widget:
- text: "今天心情不好[SEP]今天很开心"

---
# Erlangshen-MegatronBert-1.3B-Similarity

- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
- Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)

## 简介 Brief Introduction

2021年登顶FewCLUE和ZeroCLUE的中文BERT,在数个改写任务微调后的版本

This is the fine-tuned version of the Chinese BERT model on several semantic matching and similarity datasets, which topped FewCLUE and ZeroCLUE benchmark in 2021

## 模型分类 Model Taxonomy

|  需求 Demand  | 任务 Task       | 系列 Series      | 模型 Model    | 参数 Parameter | 额外 Extra |
|  :----:  | :----:  | :----:  | :----:  | :----:  | :----:  |
| 通用 General  | 自然语言理解 NLU | 二郎神 Erlangshen | MegatronBert |      1.3B      |     Similarity     |

## 模型信息 Model Information
We collect 20  paraphrace datasets in the Chinese domain for finetune, with a total of 2773880 samples
基于[Erlangshen-MegatronBert-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B),我们在收集的20个用于finetune的中文领域的改写数据集,总计227347个样本上微调了一个Similarity版本。

Based on [Erlangshen-MegatronBert-1.3B] (https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B), we fine-tuned a similarity version on 8 Chinese paraphrace datasets, with totaling 227,347 samples.

### 下游效果 Performance

|    Model   | BQ    |  BUSTM  | AFQMC    |
| :--------:    | :-----:  | :----:  | :-----:   | 
| Erlangshen-Roberta-110M-Similarity | 85.41     |   95.18    | 81.72     |
| Erlangshen-Roberta-330M-Similarity | 86.21      |   99.29    | 93.89      |  
| Erlangshen-MegatronBert-1.3B-Similarity | 86.31      |   -    | -      |  


## 使用 Usage

``` python
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizer
import torch

tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-Similarity')
model=AutoModelForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-Similarity')

texta='今天的饭不好吃'
textb='今天心情不好'

output=model(torch.tensor([tokenizer.encode(texta,textb)]))
print(torch.nn.functional.softmax(output.logits,dim=-1))
```

## 引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):

If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):

```text
@article{fengshenbang,
  author    = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}
```

也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

```text
@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
```