File size: 4,079 Bytes
f73e34c
bcae2a8
 
f73e34c
bcae2a8
 
 
 
dfdec0e
bcae2a8
 
 
 
 
 
f73e34c
20041e9
bcae2a8
bded715
20041e9
 
 
 
1802efe
20041e9
1802efe
20041e9
 
 
 
 
24c5743
20041e9
 
c95bf02
6d1fe4d
 
 
20041e9
 
 
 
 
 
 
 
 
 
 
 
 
 
a684033
bcae2a8
 
 
 
a684033
bcae2a8
 
 
 
 
 
 
 
20041e9
 
24c5743
20041e9
24c5743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20041e9
 
 
19cfbdf
20041e9
 
 
 
 
bcae2a8
20041e9
 
 
 
 
 
bcae2a8
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language: 
  - zh
license: apache-2.0

tags:
- bert
- NLU
- Similarity

inference: true

widget:
- text: "今天心情不好[SEP]今天很开心"

---
# Erlangshen-MegatronBert-1.3B-Similarity

- Main Page:[Fengshenbang](https://fengshenbang-lm.com/)
- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)

## 简介 Brief Introduction

2021年登顶FewCLUE和ZeroCLUE的中文BERT,在数个相似度任务上微调后的版本

This is the fine-tuned version of the Chinese BERT model on several similarity datasets, which topped FewCLUE and ZeroCLUE benchmark in 2021

## 模型分类 Model Taxonomy

|  需求 Demand  | 任务 Task       | 系列 Series      | 模型 Model    | 参数 Parameter | 额外 Extra |
|  :----:  | :----:  | :----:  | :----:  | :----:  | :----:  |
| 通用 General  | 自然语言理解 NLU | 二郎神 Erlangshen | MegatronBert |      1.3B      |    相似度 Similarity     |

## 模型信息 Model Information

基于[Erlangshen-MegatronBert-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B),我们在收集的20个中文领域的改写数据集,总计2773880个样本上微调了一个Similarity版本。

Based on [Erlangshen-MegatronBert-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B), we fine-tuned a similarity version on 20 Chinese paraphrase datasets, with totaling 2,773,880 samples.


### 下游效果 Performance

|    Model   | BQ    |  BUSTM  | AFQMC    |
| :--------:    | :-----:  | :----:  | :-----:   | 
| Erlangshen-Roberta-110M-Similarity | 85.41     |   95.18    | 81.72     |
| Erlangshen-Roberta-330M-Similarity | 86.21      |   99.29    | 93.89      |  
| Erlangshen-MegatronBert-1.3B-Similarity | 86.31      |   -    | -      |  


## 使用 Usage

``` python
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizer
import torch

tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-Similarity')
model=AutoModelForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-MegatronBert-1.3B-Similarity')

texta='今天的饭不好吃'
textb='今天心情不好'

output=model(torch.tensor([tokenizer.encode(texta,textb)]))
print(torch.nn.functional.softmax(output.logits,dim=-1))
```

## 引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的对该模型的论文:

If you are using the resource for your work, please cite the our paper for this model:

```text
@article{fengshenbang/erlangshen-megatronbert-sim,
  author    = {Junjie Wang and
               Yuxiang Zhang and
               Ping Yang and
               Ruyi Gan},
  title     = {Towards No.1 in {CLUE} Semantic Matching Challenge: Pre-trained Language
               Model Erlangshen with Propensity-Corrected Loss},
  journal   = {CoRR},
  volume    = {abs/2208.02959},
  year      = {2022}
}
```

如果您在您的工作中使用了我们的模型,也可以引用我们的[总论文](https://arxiv.org/abs/2209.02970):

If you are using the resource for your work, please cite the our [overview paper](https://arxiv.org/abs/2209.02970):

```text
@article{fengshenbang,
  author    = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}
```

也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

```text
@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
```