wanng commited on
Commit
7193ecf
·
1 Parent(s): afd09d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -15
README.md CHANGED
@@ -4,7 +4,7 @@ language:
4
  license: apache-2.0
5
 
6
  tags:
7
- - bert
8
  - NLU
9
  - FewCLUE
10
 
@@ -14,15 +14,51 @@ widget:
14
  - text: "生活的真谛是[MASK]。"
15
 
16
  ---
17
- # Erlangshen-MegatronBert-3.9B-Chinese model,one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
18
 
19
- Encoder structure-based Bidirection language model, focusing on solving various natural language understanding tasks. The 3.9 billion parameter Erlangshen-MegatronBert-3.9B large model, using 280G Chinese data, 64 A100 training for 30 days, is the largest open source Chinese Bert large model. On November 10, 2021, **Erlangshen-MegatronBert-1.3B reached the top of the [FewCLUE](https://www.cluebenchmarks.com/fewclue.html)** list of the authoritative benchmark for Chinese language understanding.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  [IDEA研究院中文预训练模型二郎神登顶FewCLUE榜单](https://mp.weixin.qq.com/s/bA_9n_TlBE9P-UzCn7mKoA)
22
 
23
- Among them, **CHID (Idiom Fill in the Blank) and TNEWS (News Classification) surpass human beings, CHID (Idiom Fill in the Blank), CSLDCP (Subject Document Classification), OCNLI (Natural Language Reasoning) single task first, refreshing few-shot learning records**. The Erlangshen series will continue to be optimized in terms of model scale, knowledge integration, and supervision task assistance.
 
 
 
 
24
 
25
- ## Usage
 
 
 
 
 
 
 
 
 
 
26
 
27
  ```python
28
  from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
@@ -35,23 +71,31 @@ fillmask_pipe = FillMaskPipeline(model, tokenizer)
35
  print(fillmask_pipe(text, top_k=10))
36
  ```
37
 
38
- ## Scores on downstream chinese tasks (without any data augmentation)
39
 
40
- | Model | afqmc | tnews | iflytek | ocnli | cmnli | wsc | csl |
41
- | :---------------------------------------------------------------------------------------------------: | :----: | :----: | :-----: | :----: | :----: | :----: | :---: |
42
- | roberta-wwm-ext-large | 0.7514 | 0.5872 | 0.6152 | 0.777 | 0.814 | 0.8914 | 0.86 |
43
- | [Erlangshen-MegatronBert-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B) | 0.7608 | 0.5996 | 0.6234 | 0.7917 | 0.81 | 0.9243 | 0.872 |
44
- | [Erlangshen-MegatronBert-3.9B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-3.9B-Chinese) | 0.7561 | 0.6048 | 0.6204 | 0.8278 | 0.8517 | - | - |
45
-
46
- ## Citation
47
 
48
- If you find the resource is useful, please cite the following website in your paper.
49
 
 
 
 
 
 
 
 
 
50
  ```
 
 
 
 
 
 
51
  @misc{Fengshenbang-LM,
52
  title={Fengshenbang-LM},
53
  author={IDEA-CCNL},
54
  year={2021},
55
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
56
  }
57
- ```
 
4
  license: apache-2.0
5
 
6
  tags:
7
+ - BERT
8
  - NLU
9
  - FewCLUE
10
 
 
14
  - text: "生活的真谛是[MASK]。"
15
 
16
  ---
 
17
 
18
+ # Erlangshen-MegatronBert-3.9B-Chinese
19
+
20
+ - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
21
+ - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
22
+
23
+ ## 简介 Brief Introduction
24
+
25
+ 善于处理NLU任务,现在最大的,拥有39亿的中文BERT模型。
26
+
27
+ Good at solving NLU tasks, the largest Chinese BERT (39B) currently.
28
+
29
+ ## 模型分类 Model Taxonomy
30
+
31
+ | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
32
+ | :----: | :----: | :----: | :----: | :----: | :----: |
33
+ | 通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | MegatronBERT | 3.9B | Chinese |
34
+
35
+ ## 模型信息 Model Information
36
+
37
+ Erlangshen-MegatronBert-3.9B-Chinese是一个比[Erlangshen-MegatronBert-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B)拥有更多参数的版本(39亿)。我们遵循原来的预训练方式在悟道数据集(300G版本)上进行预训练。具体地,我们在预训练阶段中使用了封神框架大概花费了64张A100(40G)约30天。
38
+
39
+ Erlangshen-MegatronBert-3.9B-Chinese (3.9B) is a larger version of [Erlangshen-MegatronBert-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B). By following the original instructions, we apply WuDao Corpora (300 GB version) as the pretraining dataset. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 30 days with 64 A100 GPUs.
40
+
41
+ ### 更多信息 More Information
42
 
43
  [IDEA研究院中文预训练模型二郎神登顶FewCLUE榜单](https://mp.weixin.qq.com/s/bA_9n_TlBE9P-UzCn7mKoA)
44
 
45
+ 2021年11月10日,Erlangshen-MegatronBERT-1.3B在FewCLUE上取得第一。其中,它在CHIDF(成语填空)TNEWS(新闻分类)子任务中的表现优于人类表现。此外,它在CHIDF(成语填空), CSLDCP(学科文献分类), OCNLI(自然语言推理)任务中均名列前茅。
46
+
47
+ On November 10, 2021, Erlangshen-MegatronBert-1.3B topped the FewCLUE benchmark. Among them, our Erlangshen outperformed human performance in CHIDF (idiom fill-in-the-blank) and TNEWS (news classification) subtasks. In addition, our Erlangshen ranked the top in CHIDF (idiom fill-in-the-blank), CSLDCP (subject literature classification), and OCNLI (natural language inference) tasks.
48
+
49
+ ### 下游效果 Performance
50
 
51
+ 下游中文任务的得分(没有做任何数据增强):
52
+
53
+ Scores on downstream Chinese tasks (without any data augmentation):
54
+
55
+ | Model | afqmc | tnews | iflytek | ocnli | cmnli | wsc | csl |
56
+ | :---------------------------------------------------------------------------------------------------: | :----: | :----: | :-----: | :----: | :----: | :----: | :---: |
57
+ | roberta-wwm-ext-large | 0.7514 | 0.5872 | 0.6152 | 0.777 | 0.814 | 0.8914 | 0.86 |
58
+ | [Erlangshen-MegatronBert-1.3B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-1.3B) | 0.7608 | 0.5996 | 0.6234 | 0.7917 | 0.81 | 0.9243 | 0.872 |
59
+ | [Erlangshen-MegatronBert-3.9B](https://huggingface.co/IDEA-CCNL/Erlangshen-MegatronBert-3.9B-Chinese) | 0.7561 | 0.6048 | 0.6204 | 0.8278 | 0.8517 | - | - |
60
+
61
+ ## 使用 Usage
62
 
63
  ```python
64
  from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
 
71
  print(fillmask_pipe(text, top_k=10))
72
  ```
73
 
74
+ ## 引用 Citation
75
 
76
+ 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):
 
 
 
 
 
 
77
 
78
+ If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
79
 
80
+ ```text
81
+ @article{fengshenbang,
82
+ author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
83
+ title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
84
+ journal = {CoRR},
85
+ volume = {abs/2209.02970},
86
+ year = {2022}
87
+ }
88
  ```
89
+
90
+ 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
91
+
92
+ You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
93
+
94
+ ```text
95
  @misc{Fengshenbang-LM,
96
  title={Fengshenbang-LM},
97
  author={IDEA-CCNL},
98
  year={2021},
99
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
100
  }
101
+ ```