File size: 3,402 Bytes
1143dee 8aaf39d 1143dee 8aaf39d 15bd917 8aaf39d 15bd917 8aaf39d a580cab 2fd5fc0 8aaf39d 1143dee d20b2b0 15bd917 8aaf39d 15bd917 d20b2b0 15bd917 8aaf39d 15bd917 8aaf39d 15bd917 8aaf39d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
language:
- zh
license: apache-2.0
tags:
- roberta
- NLU
- Similarity
- Chinese
inference: true
widget:
- text: "今天心情不好[SEP]今天很开心"
---
# Erlangshen-Roberta-330M-Similarity
- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
- Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
## 简介 Brief Introduction
中文的RoBERTa-wwm-ext-large在数个相似度任务微调后的版本
This is the fine-tuned version of the Chinese RoBERTa-wwm-ext-large model on several similarity datasets.
## 模型分类 Model Taxonomy
| 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
| :----: | :----: | :----: | :----: | :----: | :----: |
| 通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | Roberta | 330M | 中文-相似度 Similarity |
## 模型信息 Model Information
基于[chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large),我们在收集的20个中文领域的改写数据集,总计2773880个样本上微调了一个Similarity版本。
Based on [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large), we fine-tuned a similarity version on 20 Chinese paraphrase datasets, with totaling 2,773,880 samples.
### 下游效果 Performance
| Model | BQ | BUSTM | AFQMC |
| :--------: | :-----: | :----: | :-----: |
| Erlangshen-Roberta-110M-Similarity | 85.41 | 95.18 | 81.72 |
| Erlangshen-Roberta-330M-Similarity | 86.21 | 99.29 | 93.89 |
| Erlangshen-MegatronBert-1.3B-Similarity | 86.31 | - | - |
## 使用 Usage
``` python
from transformers import BertForSequenceClassification
from transformers import BertTokenizer
import torch
tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-330M-Similarity')
model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-330M-Similarity')
texta='今天的饭不好吃'
textb='今天心情不好'
output=model(torch.tensor([tokenizer.encode(texta,textb)]))
print(torch.nn.functional.softmax(output.logits,dim=-1))
```
## 引用 Citation
如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):
If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
```text
@article{fengshenbang,
author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
journal = {CoRR},
volume = {abs/2209.02970},
year = {2022}
}
```
也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
```text
@misc{Fengshenbang-LM,
title={Fengshenbang-LM},
author={IDEA-CCNL},
year={2021},
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
``` |