File size: 3,579 Bytes
2e5637e
e11bdd6
 
 
09df739
e11bdd6
09df739
 
2beda44
f28692f
09df739
 
e11bdd6
2e5637e
09df739
 
 
 
 
 
 
 
2e5637e
56a0a8f
3075ae3
56a0a8f
3075ae3
 
e11bdd6
3075ae3
e11bdd6
3075ae3
 
 
 
 
 
 
 
6eb2d16
3075ae3
 
 
 
 
 
 
 
 
 
666f5ab
e11bdd6
1e519a7
 
 
666f5ab
 
 
3075ae3
666f5ab
e11bdd6
1e519a7
 
 
 
 
 
 
 
 
 
 
 
 
e11bdd6
1e519a7
8fbad73
 
1e519a7
e11bdd6
 
3075ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
e11bdd6
3075ae3
 
 
 
 
 
e11bdd6
 
 
 
 
 
3075ae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
language: 
  - zh

inference: 
  parameters:
    temperature: 0.7
    top_p: 0.6
    repetition_penalty: 1.1
    max_new_tokens: 128
    num_return_sequences: 3
    do_sample: true

license: apache-2.0
tags:
- generate
- gpt2

widget:
- 北京是中国的
- 西湖的景色

---

# Wenzhong-GPT2-110M

- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
- Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)

## 简介 Brief Introduction

善于处理NLG任务,中文版的GPT2-Small。

Focused on handling NLG tasks, Chinese GPT2-Small.

## 模型分类 Model Taxonomy

|  需求 Demand  | 任务 Task       | 系列 Series      | 模型 Model    | 参数 Parameter | 额外 Extra |
|  :----:  | :----:  | :----:  | :----:  | :----:  | :----:  |
| 通用 General  | 自然语言生成 NLG | 闻仲 Wenzhong | GPT2 |      110M      |     中文 Chinese     |

## 模型信息 Model Information

类似于Wenzhong2.0-GPT2-3.5B-chinese,我们实现了一个small版本的12层的Wenzhong-GPT2-110M,并且在悟道(300G版本)上面进行预训练。

Similar to Wenzhong2.0-GPT2-3.5B-chinese, we implement a small size Wenzhong-GPT2-110M with 12 layers, which is pre-trained on Wudao Corpus (300G version).

## 使用 Usage

### 加载模型 Loading Models

```python 
from transformers import GPT2Tokenizer,GPT2LMHeadModel
hf_model_path = 'IDEA-CCNL/Wenzhong-GPT2-110M'
tokenizer = GPT2Tokenizer.from_pretrained(hf_model_path)
model = GPT2LMHeadModel.from_pretrained(hf_model_path)
```

### 使用示例 Usage Examples

```python
question = "北京是中国的"
inputs = tokenizer(question,return_tensors='pt')
generation_output = model.generate(**inputs,
                                return_dict_in_generate=True,
                                output_scores=True,
                                max_length=150,
                                # max_new_tokens=80,
                                do_sample=True,
                                top_p = 0.6,
                                # num_beams=5,
                                eos_token_id=50256,
                                pad_token_id=0,
                                num_return_sequences = 5)

for idx,sentence in enumerate(generation_output.sequences):
    print('next sentence %d:\n'%idx,
    tokenizer.decode(sentence).split('<|endoftext|>')[0])
    print('*'*40)
```

## 引用 Citation

如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):

If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):

```text
@article{fengshenbang,
  author    = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
  title     = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
  journal   = {CoRR},
  volume    = {abs/2209.02970},
  year      = {2022}
}
```

也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):

```text
@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2021},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
```