rgomez-itg
commited on
Commit
·
55153c5
1
Parent(s):
4a83b85
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,81 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
3 |
+
datasets:
|
4 |
+
- openslr
|
5 |
+
language:
|
6 |
+
- gl
|
7 |
+
pipeline_tag: automatic-speech-recognition
|
8 |
+
tags:
|
9 |
+
- ITG
|
10 |
+
- PyTorch
|
11 |
+
- Transformers
|
12 |
+
- whisper
|
13 |
+
- whisper-base
|
14 |
---
|
15 |
+
|
16 |
+
# whisper-base-gl
|
17 |
+
|
18 |
+
## Description
|
19 |
+
|
20 |
+
This is a fine-tuned version of the [openai/whisper-base](https://huggingface.co/openai/whisper-base) pre-trained model for ASR in galician.
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
## Dataset
|
25 |
+
|
26 |
+
We used one of the datasets available in the openslr repository, the [OpenSLR galician](https://huggingface.co/datasets/openslr/viewer/SLR77).
|
27 |
+
|
28 |
+
---
|
29 |
+
|
30 |
+
|
31 |
+
## Example inference script
|
32 |
+
|
33 |
+
### Check this example script to run our model in inference mode
|
34 |
+
|
35 |
+
```python
|
36 |
+
import torch
|
37 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
38 |
+
|
39 |
+
filename = "demo.wav" #change this line to the name of your audio file
|
40 |
+
sample_rate = 16_000
|
41 |
+
processor = AutoProcessor.from_pretrained('ITG/whisper-base-gl')
|
42 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained('ITG/whisper-base-gl')
|
43 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
44 |
+
model.to(device)
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
speech_array, _ = librosa.load(filename, sr=sample_rate)
|
48 |
+
inputs = processor(speech_array, sampling_rate=sample_rate, return_tensors="pt").to(device)
|
49 |
+
input_features = inputs.input_features
|
50 |
+
generated_ids = model.generate(inputs=input_features, max_length=225)
|
51 |
+
decode_output = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
52 |
+
print(f"ASR Galician whisper-base output: {decode_output}")
|
53 |
+
```
|
54 |
+
---
|
55 |
+
|
56 |
+
## Fine-tuning hyper-parameters
|
57 |
+
|
58 |
+
| **Hyper-parameter** | **Value** |
|
59 |
+
|:----------------------------------------:|:---------------------------:|
|
60 |
+
| Training batch size | 16 |
|
61 |
+
| Evaluation batch size | 8 |
|
62 |
+
| Learning rate | 3e-5 |
|
63 |
+
| Gradient checkpointing | true |
|
64 |
+
| Gradient accumulation steps | 1 |
|
65 |
+
| Max training epochs | 100 |
|
66 |
+
| Max steps | 4000 |
|
67 |
+
| Generate max length | 225 |
|
68 |
+
| Warmup training steps (%) | 12,5% |
|
69 |
+
| FP16 | true |
|
70 |
+
| Metric for best model | wer |
|
71 |
+
| Greater is better | false |
|
72 |
+
|
73 |
+
|
74 |
+
## Fine-tuning in a different dataset or style
|
75 |
+
|
76 |
+
If you're interested in fine-tuning your own whisper model, we suggest starting with the [openai/whisper-base model](https://huggingface.co/openai/whisper-base). Additionally, you may find the Transformers
|
77 |
+
step-by-step guide for [fine-tuning whisper on multilingual ASR datasets](https://huggingface.co/blog/fine-tune-whisper) to be a valuable resource. This guide served as a helpful reference during the training
|
78 |
+
process of this Galician whisper-base model!
|
79 |
+
|
80 |
+
|
81 |
+
|