IbrahemVX2000 commited on
Commit
1e84265
·
1 Parent(s): 7399fc1

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -33,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,185 @@
1
  ---
2
- license: other
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ prior: kandinsky-community/kandinsky-2-1-prior
4
+ tags:
5
+ - text-to-image
6
+ - kandinsky
7
  ---
8
+
9
+ # Kandinsky 2.1
10
+
11
+ Kandinsky 2.1 inherits best practices from Dall-E 2 and Latent diffusion while introducing some new ideas.
12
+
13
+ It uses the CLIP model as a text and image encoder, and diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.
14
+
15
+ The Kandinsky model is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov)
16
+
17
+ ## Usage
18
+
19
+ Kandinsky 2.1 is available in diffusers!
20
+
21
+ ```python
22
+ pip install diffusers transformers accelerate
23
+ ```
24
+ ### Text to image
25
+
26
+ ```python
27
+ from diffusers import DiffusionPipeline
28
+ import torch
29
+
30
+ pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16)
31
+ pipe_prior.to("cuda")
32
+
33
+ t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
34
+ t2i_pipe.to("cuda")
35
+
36
+ prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
37
+ negative_prompt = "low quality, bad quality"
38
+
39
+ image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, guidance_scale=1.0).to_tuple()
40
+
41
+ image = t2i_pipe(prompt, negative_prompt=negative_prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768).images[0]
42
+ image.save("cheeseburger_monster.png")
43
+ ```
44
+
45
+ ![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png)
46
+
47
+
48
+ ### Text Guided Image-to-Image Generation
49
+
50
+ ```python
51
+ from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline
52
+ import torch
53
+
54
+ from PIL import Image
55
+ import requests
56
+ from io import BytesIO
57
+
58
+ url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
59
+ response = requests.get(url)
60
+ original_image = Image.open(BytesIO(response.content)).convert("RGB")
61
+ original_image = original_image.resize((768, 512))
62
+
63
+ # create prior
64
+ pipe_prior = KandinskyPriorPipeline.from_pretrained(
65
+ "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
66
+ )
67
+ pipe_prior.to("cuda")
68
+
69
+ # create img2img pipeline
70
+ pipe = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
71
+ pipe.to("cuda")
72
+
73
+ prompt = "A fantasy landscape, Cinematic lighting"
74
+ negative_prompt = "low quality, bad quality"
75
+
76
+ image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt).to_tuple()
77
+
78
+ out = pipe(
79
+ prompt,
80
+ image=original_image,
81
+ image_embeds=image_embeds,
82
+ negative_image_embeds=negative_image_embeds,
83
+ height=768,
84
+ width=768,
85
+ strength=0.3,
86
+ )
87
+
88
+ out.images[0].save("fantasy_land.png")
89
+ ```
90
+
91
+ ![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png)
92
+
93
+
94
+ ### Interpolate
95
+
96
+ ```python
97
+ from diffusers import KandinskyPriorPipeline, KandinskyPipeline
98
+ from diffusers.utils import load_image
99
+ import PIL
100
+
101
+ import torch
102
+
103
+ pipe_prior = KandinskyPriorPipeline.from_pretrained(
104
+ "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
105
+ )
106
+ pipe_prior.to("cuda")
107
+
108
+ img1 = load_image(
109
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
110
+ )
111
+
112
+ img2 = load_image(
113
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/starry_night.jpeg"
114
+ )
115
+
116
+ # add all the conditions we want to interpolate, can be either text or image
117
+ images_texts = ["a cat", img1, img2]
118
+
119
+ # specify the weights for each condition in images_texts
120
+ weights = [0.3, 0.3, 0.4]
121
+
122
+ # We can leave the prompt empty
123
+ prompt = ""
124
+ prior_out = pipe_prior.interpolate(images_texts, weights)
125
+
126
+ pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
127
+ pipe.to("cuda")
128
+
129
+ image = pipe(prompt, **prior_out, height=768, width=768).images[0]
130
+
131
+ image.save("starry_cat.png")
132
+ ```
133
+ ![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png)
134
+
135
+
136
+ ## Model Architecture
137
+
138
+ ### Overview
139
+ Kandinsky 2.1 is a text-conditional diffusion model based on unCLIP and latent diffusion, composed of a transformer-based image prior model, a unet diffusion model, and a decoder.
140
+
141
+ The model architectures are illustrated in the figure below - the chart on the left describes the process to train the image prior model, the figure in the center is the text-to-image generation process, and the figure on the right is image interpolation.
142
+
143
+ <p float="left">
144
+ <img src="https://raw.githubusercontent.com/ai-forever/Kandinsky-2/main/content/kandinsky21.png"/>
145
+ </p>
146
+
147
+ Specifically, the image prior model was trained on CLIP text and image embeddings generated with a pre-trained [mCLIP model](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14). The trained image prior model is then used to generate mCLIP image embeddings for input text prompts. Both the input text prompts and its mCLIP image embeddings are used in the diffusion process. A [MoVQGAN](https://openreview.net/forum?id=Qb-AoSw4Jnm) model acts as the final block of the model, which decodes the latent representation into an actual image.
148
+
149
+
150
+ ### Details
151
+ The image prior training of the model was performed on the [LAION Improved Aesthetics dataset](https://huggingface.co/datasets/bhargavsdesai/laion_improved_aesthetics_6.5plus_with_images), and then fine-tuning was performed on the [LAION HighRes data](https://huggingface.co/datasets/laion/laion-high-resolution).
152
+
153
+ The main Text2Image diffusion model was trained on the basis of 170M text-image pairs from the [LAION HighRes dataset](https://huggingface.co/datasets/laion/laion-high-resolution) (an important condition was the presence of images with a resolution of at least 768x768). The use of 170M pairs is due to the fact that we kept the UNet diffusion block from Kandinsky 2.0, which allowed us not to train it from scratch. Further, at the stage of fine-tuning, a dataset of 2M very high-quality high-resolution images with descriptions (COYO, anime, landmarks_russia, and a number of others) was used separately collected from open sources.
154
+
155
+
156
+ ### Evaluation
157
+ We quantitatively measure the performance of Kandinsky 2.1 on the COCO_30k dataset, in zero-shot mode. The table below presents FID.
158
+
159
+ FID metric values ​​for generative models on COCO_30k
160
+ | | FID (30k)|
161
+ |:------|----:|
162
+ | eDiff-I (2022) | 6.95 |
163
+ | Image (2022) | 7.27 |
164
+ | Kandinsky 2.1 (2023) | 8.21|
165
+ | Stable Diffusion 2.1 (2022) | 8.59 |
166
+ | GigaGAN, 512x512 (2023) | 9.09 |
167
+ | DALL-E 2 (2022) | 10.39 |
168
+ | GLIDE (2022) | 12.24 |
169
+ | Kandinsky 1.0 (2022) | 15.40 |
170
+ | DALL-E (2021) | 17.89 |
171
+ | Kandinsky 2.0 (2022) | 20.00 |
172
+ | GLIGEN (2022) | 21.04 |
173
+
174
+ For more information, please refer to the upcoming technical report.
175
+
176
+ ## BibTex
177
+ If you find this repository useful in your research, please cite:
178
+ ```
179
+ @misc{kandinsky 2.1,
180
+ title = {kandinsky 2.1},
181
+ author = {Arseniy Shakhmatov, Anton Razzhigaev, Aleksandr Nikolich, Vladimir Arkhipkin, Igor Pavlov, Andrey Kuznetsov, Denis Dimitrov},
182
+ year = {2023},
183
+ howpublished = {},
184
+ }
185
+ ```
ddpm_scheduler/scheduler_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDPMScheduler",
3
+ "_diffusers_version": "0.18.0.dev0",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "clip_sample_range": 2.0,
9
+ "dynamic_thresholding_ratio": 0.995,
10
+ "num_train_timesteps": 1000,
11
+ "prediction_type": "epsilon",
12
+ "sample_max_value": 2.0,
13
+ "thresholding": true,
14
+ "trained_betas": null,
15
+ "variance_type": "learned_range"
16
+ }
model_index.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "KandinskyPipeline",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "text_encoder": [
5
+ "kandinsky",
6
+ "MultilingualCLIP"
7
+ ],
8
+ "tokenizer": [
9
+ "transformers",
10
+ "XLMRobertaTokenizerFast"
11
+ ],
12
+ "scheduler": [
13
+ "diffusers",
14
+ "DDIMScheduler"
15
+ ],
16
+ "unet": [
17
+ "diffusers",
18
+ "UNet2DConditionModel"
19
+ ],
20
+ "movq": [
21
+ "diffusers",
22
+ "VQModel"
23
+ ]
24
+ }
movq/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "VQModel",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "act_fn": "silu",
5
+ "block_out_channels": [
6
+ 128,
7
+ 256,
8
+ 256,
9
+ 512
10
+ ],
11
+ "down_block_types": [
12
+ "DownEncoderBlock2D",
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "AttnDownEncoderBlock2D"
16
+ ],
17
+ "in_channels": 3,
18
+ "latent_channels": 4,
19
+ "layers_per_block": 2,
20
+ "norm_num_groups": 32,
21
+ "norm_type": "spatial",
22
+ "num_vq_embeddings": 16384,
23
+ "out_channels": 3,
24
+ "sample_size": 32,
25
+ "scaling_factor": 0.18215,
26
+ "up_block_types": [
27
+ "AttnUpDecoderBlock2D",
28
+ "UpDecoderBlock2D",
29
+ "UpDecoderBlock2D",
30
+ "UpDecoderBlock2D"
31
+ ],
32
+ "vq_embed_dim": 4
33
+ }
scheduler/scheduler_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDIMScheduler",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "num_train_timesteps": 1000,
5
+ "beta_schedule": "linear",
6
+ "beta_start": 0.00085,
7
+ "beta_end":0.012,
8
+ "clip_sample" : false,
9
+ "set_alpha_to_one" : false,
10
+ "steps_offset" : 1,
11
+ "prediction_type" : "epsilon",
12
+ "thresholding" : false
13
+ }
text_encoder/config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MultilingualCLIP"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "xlm-roberta",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "output_past": true,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.17.0.dev0",
22
+ "type_vocab_size": 1,
23
+ "use_cache": true,
24
+ "vocab_size": 250002,
25
+ "numDims": 768,
26
+ "transformerDimensions": 1024
27
+ }
tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11f3aa31ab2b0fa69e0e7f941f6badc4efd31066fb5221669ba55c48f5e6752a
3
+ size 18082828
tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "<s>",
5
+ "eos_token": "</s>",
6
+ "mask_token": {
7
+ "__type": "AddedToken",
8
+ "content": "<mask>",
9
+ "lstrip": true,
10
+ "normalized": true,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "model_max_length": 512,
15
+ "pad_token": "<pad>",
16
+ "sep_token": "</s>",
17
+ "tokenizer_class": "XLMRobertaTokenizer",
18
+ "unk_token": "<unk>"
19
+ }
unet/config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.17.0.dev0",
4
+ "act_fn": "silu",
5
+ "addition_embed_type": "text_image",
6
+ "addition_embed_type_num_heads": 64,
7
+ "attention_head_dim": 64,
8
+ "block_out_channels": [
9
+ 384,
10
+ 768,
11
+ 1152,
12
+ 1536
13
+ ],
14
+ "center_input_sample": false,
15
+ "class_embed_type": null,
16
+ "class_embeddings_concat": false,
17
+ "conv_in_kernel": 3,
18
+ "conv_out_kernel": 3,
19
+ "cross_attention_dim": 768,
20
+ "cross_attention_norm": null,
21
+ "down_block_types": [
22
+ "ResnetDownsampleBlock2D",
23
+ "SimpleCrossAttnDownBlock2D",
24
+ "SimpleCrossAttnDownBlock2D",
25
+ "SimpleCrossAttnDownBlock2D"
26
+ ],
27
+ "downsample_padding": 1,
28
+ "dual_cross_attention": false,
29
+ "encoder_hid_dim": 1024,
30
+ "encoder_hid_dim_type": "text_image_proj",
31
+ "flip_sin_to_cos": true,
32
+ "freq_shift": 0,
33
+ "in_channels": 4,
34
+ "layers_per_block": 3,
35
+ "mid_block_only_cross_attention": null,
36
+ "mid_block_scale_factor": 1,
37
+ "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
38
+ "norm_eps": 1e-05,
39
+ "norm_num_groups": 32,
40
+ "num_class_embeds": null,
41
+ "only_cross_attention": false,
42
+ "out_channels": 8,
43
+ "projection_class_embeddings_input_dim": null,
44
+ "resnet_out_scale_factor": 1.0,
45
+ "resnet_skip_time_act": false,
46
+ "resnet_time_scale_shift": "scale_shift",
47
+ "sample_size": 64,
48
+ "time_cond_proj_dim": null,
49
+ "time_embedding_act_fn": null,
50
+ "time_embedding_dim": null,
51
+ "time_embedding_type": "positional",
52
+ "timestep_post_act": null,
53
+ "up_block_types": [
54
+ "SimpleCrossAttnUpBlock2D",
55
+ "SimpleCrossAttnUpBlock2D",
56
+ "SimpleCrossAttnUpBlock2D",
57
+ "ResnetUpsampleBlock2D"
58
+ ],
59
+ "upcast_attention": false,
60
+ "use_linear_projection": false
61
+ }