File size: 2,711 Bytes
9211f2e ccb600b 9211f2e 6d3c73a 7ddd818 6d3c73a 9211f2e 10f3977 9211f2e fd03ade 9211f2e 111a6c0 cb8311d 111a6c0 9211f2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
datasets:
- NeelNanda/pile-10k
language:
- en
---
## Model Details
This model is an int4 model with group_size 128 of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) generated by [intel/auto-round](https://github.com/intel/auto-round).
Inference of this model is compatible with AutoGPTQ's Kernel.
### Reproduce the model
Here is the sample command to reproduce the model
```bash
git clone https://github.com/intel/auto-round
cd auto-round/examples/language-modeling
pip install -r requirements.txt
python3 main.py \
--model_name microsoft/Phi-3-mini-4k-instruct \
--device 0 \
--group_size 128 \
--bits 4 \
--iters 1000 \
--nsamples 512 \
--deployment_device 'gpu' \
--disable_quanted_input \
--output_dir "./tmp_autoround" \
```
### Evaluate the model
Install [lm-eval-harness 0.4.2](https://github.com/EleutherAI/lm-evaluation-harness.git) from source.
```bash
lm_eval --model hf --model_args pretrained="Intel/Phi-3-mini-4k-instruct-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu --batch_size 32
```
| Metric | FP16 | INT4 |
| -------------- | ------ | ------ |
| Avg. | 0.6539 | 0.6509 |
| mmlu | 0.6790 | 0.6662 |
| lambada_openai | 0.6825 | 0.6814 |
| hellaswag | 0.6059 | 0.5945 |
| winogrande | 0.7388 | 0.7348 |
| piqa | 0.8009 | 0.7933 |
| truthfulqa_mc1 | 0.3917 | 0.3868 |
| openbookqa | 0.3900 | 0.3860 |
| boolq | 0.8627 | 0.8618 |
| arc_easy | 0.8333 | 0.8333 |
| arc_challenge | 0.5538 | 0.5708 |
## Caveats and Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
Here are a couple of useful links to learn more about Intel's AI software:
* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
## Cite
@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
[arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round) |