English
File size: 2,711 Bytes
9211f2e
 
 
 
 
 
 
 
 
 
 
 
ccb600b
9211f2e
 
 
 
6d3c73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ddd818
6d3c73a
 
 
 
 
 
 
 
 
 
9211f2e
 
10f3977
9211f2e
 
 
 
 
 
 
fd03ade
9211f2e
111a6c0
 
 
 
 
 
cb8311d
111a6c0
 
 
 
9211f2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
datasets:
- NeelNanda/pile-10k
language:
- en
---


## Model Details

This model is an int4 model with group_size 128 of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)  generated by [intel/auto-round](https://github.com/intel/auto-round). 
Inference of this model is compatible with AutoGPTQ's Kernel.






### Reproduce the model

Here is the sample command to reproduce the model

```bash
git clone https://github.com/intel/auto-round
cd auto-round/examples/language-modeling
pip install -r requirements.txt
python3 main.py \
--model_name  microsoft/Phi-3-mini-4k-instruct \
--device 0 \
--group_size 128 \
--bits 4 \
--iters 1000 \
--nsamples 512 \
--deployment_device 'gpu' \
--disable_quanted_input \
--output_dir "./tmp_autoround" \

```





### Evaluate the model 

Install [lm-eval-harness 0.4.2](https://github.com/EleutherAI/lm-evaluation-harness.git) from source.

```bash
lm_eval --model hf --model_args pretrained="Intel/Phi-3-mini-4k-instruct-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,arc_easy,arc_challenge,mmlu --batch_size 32
```



| Metric         | FP16   | INT4   |
| -------------- | ------ | ------ |
| Avg.           | 0.6539 | 0.6509 |
| mmlu           | 0.6790 | 0.6662 |
| lambada_openai | 0.6825 | 0.6814 |
| hellaswag      | 0.6059 | 0.5945 |
| winogrande     | 0.7388 | 0.7348 |
| piqa           | 0.8009 | 0.7933 |
| truthfulqa_mc1 | 0.3917 | 0.3868 |
| openbookqa     | 0.3900 | 0.3860 |
| boolq          | 0.8627 | 0.8618 |
| arc_easy       | 0.8333 | 0.8333 |
| arc_challenge  | 0.5538 | 0.5708 |







## Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Here are a couple of useful links to learn more about Intel's AI software:

* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)



## Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.



## Cite

@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }

[arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)