File size: 1,509 Bytes
ca2a954
1ffbb82
ca2a954
1ffbb82
 
 
 
 
 
 
 
 
 
 
 
ca2a954
1ffbb82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48472a7
1ffbb82
48472a7
 
1ffbb82
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
language: en
license: mit
datasets:
- glue
- mrpc
metrics:
- f1
tags:
- text-classfication
- nlp
- neural-compressor
- PostTrainingDynamic
- int8
- Intel® Neural Compressor
---

# Dynamically quantized DistilBERT base uncased finetuned MPRC

## Table of Contents
- [Model Details](#model-details)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)

## Model Details
**Model Description:** This model is a [DistilBERT](https://huggingface.co/textattack/distilbert-base-uncased-MRPC) fine-tuned on MPRC dynamically quantized with [optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). 
- **Model Type:** Text Classification
- **Language(s):** English
- **License:** Apache-2.0
- **Parent Model:** For more details on the original model, we encourage users to check out [this](https://huggingface.co/textattack/distilbert-base-uncased-MRPC) model card.

## How to Get Started With the Model

### PyTorch

To load the quantized model, you can do as follows:

```python
from optimum.intel import INCModelForSequenceClassification

model_id = "Intel/distilbert-base-uncased-MRPC-int8-dynamic"
model = INCModelForSequenceClassification.from_pretrained(model_id)
```

#### Test result

|   |INT8|FP32|
|---|:---:|:---:|
| **Accuracy (eval-f1)** |0.8983|0.9027|
| **Model size (MB)**  |75|268|