File size: 7,864 Bytes
3371fdb
 
 
 
a9d32da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371fdb
 
a9d32da
3371fdb
a9d32da
3371fdb
a9d32da
 
 
 
 
 
 
 
 
3371fdb
a9d32da
3371fdb
a9d32da
3371fdb
a9d32da
 
 
 
 
3371fdb
 
a9d32da
3371fdb
a9d32da
3371fdb
36ef144
3371fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e14d881
3371fdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9d32da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: other
license_name: intel-research-use-license
license_link: LICENSE
tags:
- intel
- gaudi
- LLM
results:
  - task:
      type: Large Language Model
      name: Large Language Model
    metrics:
    - type: GQA
      name: GQA
      value: 60.6138
    - type: MMVP
      name: MMVP
      value: 36
    - type: Pope Acc
      name: Pope Acc
      value: 87.33
    - type: Pope F1
      name: Pope F1
      value: 86.5
    - type: MMVet
      name: MMVet
      value: 31.9725
    - type: ScienceQA
      name: ScienceQA
      value: 72.9797
    - type: llavaw (1)
      name: llavaw
      value: 56.9
    - type: llavaw (2)
      name: llavaw
      value: 61.9
    - type: llavaw (3)
      name: llavaw
      value: 73.6
    - type: llavaw (4)
      name: llavaw
      value: 65.7
    
library_name: transformers
pipeline_tag: image-text-to-text
---

## Model Details:  LLaVA-llama-3-8B

`llava-llama-3-8b` is a large multimodal model (LMM) trained using the [LLaVA-v1.5 framework](https://arxiv.org/abs/2310.03744) with the 8-billion parameter [`meta-llama/Meta-Llama-3-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model as language backbone and the CLIP-based vision encoder.

| Model Details | Description |
| ----------- | ----------- | 
| Authors | Intel: [Musashi Hinck*](https://huggingface.co/musashihinck), [Matthew L. Olson*](https://huggingface.co/matthewlyleolson),  [Vasudev Lal](https://huggingface.co/vasudevlal) | 
| Date | May 2024 | 
| Version | 1 | 
| Type | Large multimodal model (LMM) | 
| Paper or Other Resources | [Improved Baselines with Visual Instruction Tuning](https://arxiv.org/abs/2310.03744) | 
| License | [Intel Research Use License](https://huggingface.co/Intel/llava-llama-3-8b/blob/main/LICENSE) | All usage code is licensed Apache 2.0
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/llava-llama-3-8b/discussions) and [Intel DevHub Discord](https://discord.gg/rv2Gp55UJQ)|

This model card was created by [Eduardo Alvarez](https://huggingface.co/eduardo-alvarez) and the authors listed above.

## Intended Use

| Intended Use | Description |
| ----------- | ----------- | 
| Primary intended uses | The model has been finetuned for multimodal benchmark evaluations, but can also be used as a multimodal chatbot. | 
| Primary intended users | Anyone using or evaluating multimodal models. | 
| Out-of-scope uses | This model is not intended for uses that require high levels of factuality, high stakes situations, mental health or medical applications, generating misinformation or disinformation, impersonating others, facilitating or inciting harassment or violence, any use that could lead to the violation of a human right under the UN Declaration of Human Rights. |


### How to use

Please note, we only provide the trained weights difference and do not provide a copy of the base meta-llama/Meta-Llama-3-8B-Instruct model. Any use of these weights requires a separate download of the base model.

```python
# Copyright 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForPreTraining
import transformers

def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result

def add_model_a_to_b(model_a, model_b):
    state_dict_a = model_a.state_dict()
    state_dict_b = model_b.state_dict()

    # Ensure keys match before subtraction
    if set(state_dict_a.keys()) != set(state_dict_b.keys()):
        raise ValueError("Model state dicts do not have the same keys.")

    for key in state_dict_a:
        if state_dict_a[key].shape != state_dict_b[key].shape:
            raise ValueError(f"Shape mismatch for key '{key}': {state_dict_a[key].shape} vs {state_dict_b[key].shape}")
        # Subtract model_a's weights from model_b for the matching key
        state_dict_b[key] = state_dict_b[key] + state_dict_a[key]

    # Update model_b with the new weights
    model_b.load_state_dict(state_dict_b)

output_checkpoint = "" # set if you don't want to merge every time
hf_checkpoint = "Intel/llava-llama-3-8b"
device = "cuda" if torch.cuda.is_available() else "cpu"

processor = AutoProcessor.from_pretrained(hf_checkpoint)
model = AutoModelForPreTraining.from_pretrained(hf_checkpoint)
if model.language_model.model.embed_tokens.weight[-1].sum() == 0:
    print("adding llama3 weights")
    model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
    pipeline = transformers.pipeline(
        "text-generation",
        model=model_id,
        model_kwargs={"torch_dtype": torch.bfloat16},
        device_map="cpu",
    )
    llama3 = pipeline.model
    add_model_a_to_b(llama3, model.language_model)
    if output_checkpoint:
        print("saving weights, so no adding is needed again")
        model.save_pretrained(output_checkpoint)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

prompt = processor.tokenizer.apply_chat_template(
    [{'role': 'user', 'content': "<image>\nWhat's the content of the image?"}],
    tokenize=False,
    add_generation_prompt=True
)

url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image = Image.open(requests.get(url, stream=True).raw)

#original llava pads with mean, HF llava pads with zeros
image = expand2square(image, tuple(int(x*255) for x in processor.image_processor.image_mean)) 
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
# Generate
generate_ids = model.generate(**inputs, max_length=30)
output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(output)
```

## Factors

| Factors | Description | 
| ----------- | ----------- | 
| Environment | Trained on a 4 node cluster with a total of 32 Gaudi 2 accelerators |
| Card Prompts | Model training and deployment on alternate hardware and software will change model performance |

## Training Data

The model was trained using the LLaVA-v1.5 data mixture. This is listed as follows:

- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP.
- 158K GPT-generated multimodal instruction-following data.
- 450K academic-task-oriented VQA data mixture.
- 40K ShareGPT data.

## Ethical Considerations

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.

| Ethical Considerations | Description | 
| ----------- | ----------- | 
| Data | The model was trained using the LLaVA-v1.5 data mixture as described above. |
| Human life | The model is not intended to inform decisions central to human life or flourishing. | 
| Mitigations | No additional risk mitigation strategies were considered during model development. |
| Risks and harms | This model has not been assessed for harm or biases, and should not be used for sensitive applications where it may cause harm. |
| Use cases | - | 

## Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. This model has not been assessed for harm or biases, and should not be used for sensitive applications where it may cause harm.