File size: 14,993 Bytes
b300ef4
 
37a4384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b300ef4
14f9323
37a4384
14f9323
37a4384
14f9323
37a4384
 
1283d23
37a4384
14f9323
37a4384
 
 
 
 
 
 
 
 
14f9323
37a4384
 
 
 
 
14f9323
37a4384
14f9323
e852bc2
 
14f9323
 
 
 
 
 
 
0ff1545
 
 
14f9323
 
 
fbbb8d6
 
14f9323
 
37a4384
 
 
 
 
 
 
 
 
 
478ba3c
37a4384
 
f1d0c6f
3995e9a
37a4384
f1d0c6f
37a4384
 
 
 
 
 
f1d0c6f
 
37a4384
 
 
 
 
 
 
 
f1d0c6f
37a4384
 
14f9323
8394403
14f9323
8394403
 
 
 
 
 
af2489c
8394403
 
 
 
af2489c
8394403
 
 
 
 
 
 
 
 
 
af2489c
 
8394403
 
af2489c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a4384
 
2c7e06a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a4384
 
 
 
56bb9e3
 
 
bb4b857
37a4384
 
 
 
 
 
 
 
af2489c
14f9323
 
37a4384
 
 
 
 
 
14f9323
37a4384
 
 
 
 
14f9323
37a4384
 
 
 
 
 
 
 
 
 
 
 
 
 
14f9323
c0d379a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a4384
 
14f9323
37a4384
 
 
14f9323
37a4384
14f9323
37a4384
14f9323
 
6007258
37a4384
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
---
license: apache-2.0
tags:
- LLMs
- mistral
- Intel
pipeline_tag: text-generation
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: neural-chat-7b-v3-1
  results:
  - task:
      type: Large Language Model
      name: Large Language Model
    dataset:
      type: Open-Orca/SlimOrca
      name: Open-Orca/SlimOrca
    metrics:
    - type: ARC (25-shot)
      value: 66.21
      name: ARC (25-shot)
      verified: true
    - type: HellaSwag (10-shot)
      value: 83.64
      name: HellaSwag (10-shot)
      verified: true
    - type: MMLU (5-shot)
      value: 62.37
      name: MMLU (5-shot)
      verified: true
    - type: TruthfulQA (0-shot)
      value: 59.65
      name: TruthfulQA (0-shot)
      verified: true
    - type: Winogrande (5-shot)
      value: 78.14
      name: Winogrande (5-shot)
      verified: true
    - type: GSM8K (5-shot)
      value: 19.56
      name: GSM8K (5-shot)
      verified: true
    - type: DROP (3-shot)
      value: 43.84
      name: DROP (3-shot)
      verified: true
datasets:
- Open-Orca/SlimOrca
language:
- en
---

## Model Details: Neural-Chat-v3-1

This model is a fine-tuned 7B parameter LLM on the Intel Gaudi 2 processor from the [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the open source dataset [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca). The model was aligned using the Direct Performance Optimization (DPO) method with [Intel/orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs). For more information, refer to the Medium article [The Practice of Supervised Fine-tuning and Direct Preference Optimization on Intel Gaudi2](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3).

<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6297f0e30bd2f58c647abb1d/ctASHUT5QYIxMsOFa-sHC.webp" width="500"/>
  Photo by Google DeepMind on Unsplash
</p>

| Model Detail | Description |
| ----------- | ----------- | 
| Model Authors - Company | Intel. The NeuralChat team with members from DCAI/AISE/AIPT. Core team members: Kaokao Lv, Liang Lv, Chang Wang, Wenxin Zhang, Xuhui Ren, and Haihao Shen.| 
| Date | October, 2023 | 
| Version | v3-1 | 
| Type | 7B Large Language Model | 
| Paper or Other Resources | [Medium Blog](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3) | 
| License | Apache 2.0 |
| Questions or Comments | [Community Tab](https://huggingface.co/Intel/neural-chat-7b-v3-1/discussions) and [Intel DevHub Discord](https://discord.gg/rv2Gp55UJQ)|

| Intended Use | Description |
| ----------- | ----------- | 
| Primary intended uses | You can use the fine-tuned model for several language-related tasks. Checkout the [LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to see how this model is doing. | 
| Primary intended users | Anyone doing inference on language-related tasks. | 
| Out-of-scope uses | This model in most cases will need to be fine-tuned for your particular task.  The model should not be used to intentionally create hostile or alienating environments for people.|

## How To Use

Context length for this model: 8192 tokens (same as https://huggingface.co/mistralai/Mistral-7B-v0.1)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-04
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-HPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2.0

### Reproduce the model
Here is the sample code to reproduce the model: [GitHub sample code](https://github.com/intel/intel-extension-for-transformers/blob/main/intel_extension_for_transformers/neural_chat/examples/finetuning/finetune_neuralchat_v3). Here is the documentation to reproduce building the model:

```bash
git clone https://github.com/intel/intel-extension-for-transformers.git
cd intel-extension-for-transformers

docker build --no-cache ./ --target hpu --build-arg REPO=https://github.com/intel/intel-extension-for-transformers.git --build-arg ITREX_VER=main -f ./intel_extension_for_transformers/neural_chat/docker/Dockerfile -t chatbot_finetuning:latest

docker run -it --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host chatbot_finetuning:latest

# after entering docker container
cd examples/finetuning/finetune_neuralchat_v3

```
We select the latest pretrained mistralai/Mistral-7B-v0.1 and the open source dataset Open-Orca/SlimOrca to conduct the experiment.

The below script use deepspeed zero2 to lanuch the training with 8 cards Gaudi2. In the `finetune_neuralchat_v3.py`, the default `use_habana=True, use_lazy_mode=True, device="hpu"` for Gaudi2. And if you want to run it on NVIDIA GPU, you can set them `use_habana=False, use_lazy_mode=False, device="auto"`.

```python
deepspeed --include localhost:0,1,2,3,4,5,6,7 \
    --master_port 29501 \
    finetune_neuralchat_v3.py
```

Merge the LoRA weights:

```python
python apply_lora.py \
    --base-model-path mistralai/Mistral-7B-v0.1 \
    --lora-model-path finetuned_model/ \
    --output-path finetuned_model_lora
```


### FP32 Inference with Transformers

```python
import transformers

model_name = 'Intel/neural-chat-7b-v3-1'
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)

def generate_response(system_input, user_input):

    # Format the input using the provided template
    prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n"

    # Tokenize and encode the prompt
    inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False)

    # Generate a response
    outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Extract only the assistant's response
    return response.split("### Assistant:\n")[-1]


# Example usage
system_input = "You are a math expert assistant. Your mission is to help users understand and solve various math problems. You should provide step-by-step solutions, explain reasonings and give the correct answer."
user_input = "calculate 100 + 520 + 60"
response = generate_response(system_input, user_input)
print(response)

# expected response
"""
To calculate the sum of 100, 520, and 60, we will follow these steps:

1. Add the first two numbers: 100 + 520
2. Add the result from step 1 to the third number: (100 + 520) + 60

Step 1: Add 100 and 520
100 + 520 = 620

Step 2: Add the result from step 1 to the third number (60)
(620) + 60 = 680

So, the sum of 100, 520, and 60 is 680.
"""
```

### BF16 Inference with Intel Extension for Transformers and Intel Extension for Pytorch
```python
from transformers import AutoTokenizer, TextStreamer
import torch
from intel_extension_for_transformers.transformers import AutoModelForCausalLM
import intel_extension_for_pytorch as ipex

model_name = "Intel/neural-chat-7b-v3-1"
prompt = "Once upon a time, there existed a little girl,"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
streamer = TextStreamer(tokenizer)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model = ipex.optimize(model.eval(), dtype=torch.bfloat16, inplace=True, level="O1", auto_kernel_selection=True)

outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)
```


### INT4 Inference with Transformers and Intel Extension for Transformers
```python
from transformers import AutoTokenizer, TextStreamer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig
model_name = "Intel/neural-chat-7b-v3-1"

# for int8, should set weight_dtype="int8"       
config = WeightOnlyQuantConfig(compute_dtype="bf16", weight_dtype="int4")
prompt = "Once upon a time, there existed a little girl,"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids
streamer = TextStreamer(tokenizer)

model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=config)
outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300)

```

| Factors | Description | 
| ----------- | ----------- | 
| Groups | More details about the dataset and annotations can be found at [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) and the associated paper at https://arxiv.org/abs/2306.02707. | 
| Instrumentation | The performance of the model can vary depending on the inputs to the model. In this case, the prompts provided can drastically change the prediction of the language model. |
| Environment | The model was trained on the Intel Gaudi 2 processor (8 cards).  |
| Card Prompts | Model deployment on alternate hardware and software will change model performance. The model evaluation factors are from the Hugging Face LLM leaderboard: ARC, HellaSwag, MMLU, TruthfulQA, Winogrande, GSM8K, and DROP (see Quantitative Analyses below). |

| Metrics | Description | 
| ----------- | ----------- | 
| Model performance measures | The model performance was evaluated against other LLMs according to the measures on the LLM leaderboard. These were selected as this has become the standard for LLM performance. |
| Decision thresholds | No decision thresholds were used. | 
| Approaches to uncertainty and variability | - | 

| Training and Evaluation Data | Description | 
| ----------- | ----------- | 
| Datasets | The training data are from [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca). There is no contamination from the GSM8k test set, as this is not a part of the Open-Orca/SlimOrca dataset.|
| Motivation | - |
| Preprocessing | - | 

## Quantitative Analyses 
The model was submitted to the [LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The detailed submission can be found here: [https://huggingface.co/datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3-1](https://huggingface.co/datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3-1). The metrics can be found below and show that the model has significantly improved performance from Mistral-7B-v0.1 and neural-chat-7b-v3.

| Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
|[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 50.32 | 59.58  | 83.31  | 64.16  | 42.15 | 78.37 | 18.12 | 6.14 |
| [Intel/neural-chat-7b-v3](https://huggingface.co/Intel/neural-chat-7b-v3) | **57.31** | 67.15 | 83.29 | 62.26  | 58.77 | 78.06 | 1.21 | 50.43 |
| [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) | **59.06** | 66.21 | 83.64 | 62.37  | 59.65 | 78.14 | 19.56 | 43.84 |

## Testing Model Quantizability
The following code block can be run to determine, for PyTorch models, if that model is amenable to quantization.  
One caveat - the Intel Extension for PyTorch uses optimum ipex, which is pre-release and needs further testing.

To install the dependencies, you should first install Intel Extensions for PyTorch and tehn pip install each of the following dependencies:
- torch
- optimum.intel
- optimum[ipex]
- transformers

### Intel Extension for PyTorch method:
In this case, we are testing if neural-chat-7b-v3-1 can be quantized and this testing method demonstrates the model size change, for example:
when the base type is specified to be torch.bfloat16 but also specifying that load_in_4bit=True which causes the weights only to be quantized we see an output from the model testing as follows:
- **model_quantize_internal: model size  = 27625.02 MB**
- **model_quantize_internal: quant size  =  4330.80 MB**

This code should run from within a python script - such as ipex_test.py as follows:
```python
import torch
import os
from transformers import AutoTokenizer
from intel_extension_for_transformers.transformers import AutoModelForCausalLM, pipeline
model_name = "Intel/neural-chat-7b-v3-1"     
prompt = "Once upon a time, there existed a little girl,"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(prompt, return_tensors="pt").input_ids

result = {torch.bfloat16:"failed"}
typ = torch.bfloat16
try:
    model = AutoModelForCausalLM.from_pretrained(model_name, load_in_4bit=True,  torch_dtype = typ)
    outputs = model.generate(inputs, max_new_tokens=20)
    result[typ] = f"passed, {os.stat(model.bin_file).st_size}"
except:
    result[typ] = "failed"

    
print("\n\nResults of quantizing: ")  
# determine if Quantized
with open(r"output.log", 'r') as fp:
    for l_no, line in enumerate(fp):
        # search string
        if 'model_quantize_internal' in line:
            print(line)
            
print("\n\nExecution results ")
for k,v in result.items():
    print(k,v)
    
print("\n\nModel Output: ")
tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
```
Run the code as folows from a bash terminal:
```bash
python ipex_test.py 2>&1 | tee output.log
```
The entire output is captured in the output.log but it will be summarized, 
along with output from the model indicating either pass or fail of the quantization as well as model output for a given prompt.


## Ethical Considerations and Limitations
Neural-chat-7b-v3-1 can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.

Therefore, before deploying any applications of neural-chat-7b-v3-1, developers should perform safety testing.

## Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Here are a couple of useful links to learn more about Intel's AI software:
* Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
* Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers)

## Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.