File size: 1,329 Bytes
e23b0ca
48b20cc
 
e23b0ca
 
 
48b20cc
e23b0ca
48b20cc
 
 
 
e23b0ca
48b20cc
e23b0ca
48b20cc
 
e23b0ca
48b20cc
e23b0ca
48b20cc
e23b0ca
48b20cc
e23b0ca
48b20cc
 
 
 
 
 
 
 
e23b0ca
48b20cc
e23b0ca
48b20cc
e23b0ca
48b20cc
e23b0ca
48b20cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
language: en
license: apache-2.0
library_name: transformers
---

# SQFT Base Model: sqft-phi-3-mini-4k-30-base

- Source Model: [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 30%
- Quantization: No

## Model Sources

- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models]()

## How to get this model

Refer to the command in [SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11).

## Citation

```bash
@article{munoz2024sqft,
  title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
  journal={},
  year={2024}
}
```

## Acknowledgement

Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.

## License

Apache-2.0