File size: 1,891 Bytes
d2a098b
1b5928a
 
d2a098b
 
 
 
 
 
 
 
1b5928a
 
 
d2a098b
 
79a67f5
d2a098b
1b5928a
006970f
d2a098b
79a67f5
d2a098b
79a67f5
3ad1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79a67f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
base_model:
- meta-llama/Llama-3.2-1B-Instruct
tags:
- text-generation-inference
- transformers
- llama
- trl
license: apache-2.0
language:
- en
datasets:
- microsoft/orca-agentinstruct-1M-v1
- Isotonic/agentinstruct-1Mv1-combined
---

# OrcaAgent-llama3.2-1b

<!-- Provide a quick summary of what the model is/does. -->
This model is finetuned on a subset from [microsoft/orca-agentinstruct-1M-v1](https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1), dataset details and prompts can be found in [Isotonic/agentinstruct-1Mv1-combined](https://huggingface.co/datasets/Isotonic/agentinstruct-1Mv1-combined)

## Use

```python3
import torch
from transformers import pipeline
"
pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
messages = [
    {"role": "user", "content": "\n\nYou are an expert text classifier. You need to classify the text below into one of the given classes. \n\nText:\n\nThe anticipation of the meteor shower has filled the astronomy club with an infectious excitement, as we prepare our telescopes for what could be a once-in-a-lifetime celestial event.\n\nClasses:\n\nAffirmative Sentiment;Mildly Affirmative Sentiment;Exuberant Endorsement;Objective Assessment;Critical Sentiment;Subdued Negative Sentiment;Intense Negative Sentiment;Ambivalent Sentiment;Sarcastic Sentiment;Ironical Sentiment;Apathetic Sentiment;Elation/Exhilaration Sentiment;Credibility Endorsement;Apprehension/Anxiety;Unexpected Positive Outcome;Melancholic Sentiment;Aversive Repulsion;Indignant Discontent;Expectant Enthusiasm;Affectionate Appreciation;Anticipatory Positivity;Expectation of Negative Outcome;Nuanced Sentiment Complexity\n\nThe output format must be:\n\nFinal class: {selected_class}\n\n"},
]
outputs = pipe(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```