Upload handler.py
Browse files- handler.py +35 -0
handler.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
|
7 |
+
class EndpointHandler():
|
8 |
+
|
9 |
+
def __init__(self, path=""):
|
10 |
+
self.model = transformers.AutoModelForCausalLM.from_pretrained(path,
|
11 |
+
#"/Users/itamarlevi/Downloads/my_repo_hf/hf/mpt-7b/venv/Itamarl/test",
|
12 |
+
# 'mosaicml/mpt-7b-instruct',
|
13 |
+
# 'mosaicml/mpt-7b',
|
14 |
+
trust_remote_code=True,
|
15 |
+
torch_dtype=torch.bfloat16,
|
16 |
+
max_seq_len=2048
|
17 |
+
)
|
18 |
+
|
19 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
|
20 |
+
print("tokenizer created ", datetime.now())
|
21 |
+
self.generate_text = transformers.pipeline(
|
22 |
+
model=self.model,
|
23 |
+
tokenizer=self.tokenizer,
|
24 |
+
task='text-generation',
|
25 |
+
return_full_text=True,
|
26 |
+
temperature=0.1,
|
27 |
+
top_p=0.15,
|
28 |
+
top_k=0,
|
29 |
+
# max_new_tokens=64,
|
30 |
+
repetition_penalty=1.1
|
31 |
+
)
|
32 |
+
|
33 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
34 |
+
res = self.generate_text("Explain to me the difference between nuclear fission and fusion.")
|
35 |
+
return res[0]["generated_text"]
|