File size: 48,695 Bytes
7c2b8c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
2023-02-09 23:54:56,860 32k INFO {'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'aeon': 0}, 'model_dir': './logs\\32k'}
2023-02-09 23:55:16,700 32k INFO Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-09 23:55:20,130 32k INFO Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-09 23:55:47,616 32k INFO Train Epoch: 1 [0%]
2023-02-09 23:55:47,617 32k INFO [2.4760148525238037, 2.3857452869415283, 12.13435173034668, 38.74782943725586, 12.577811241149902, 0, 0.0001]
2023-02-09 23:55:53,842 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-09 23:56:10,616 32k INFO Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-09 23:57:17,312 32k INFO ====> Epoch: 1
2023-02-09 23:58:41,881 32k INFO ====> Epoch: 2
2023-02-09 23:59:43,565 32k INFO Train Epoch: 3 [63%]
2023-02-09 23:59:43,565 32k INFO [3.0033481121063232, 2.0346643924713135, 9.557120323181152, 17.325883865356445, 1.1444225311279297, 200, 9.99750015625e-05]
2023-02-10 00:00:06,584 32k INFO ====> Epoch: 3
2023-02-10 00:01:30,796 32k INFO ====> Epoch: 4
2023-02-10 00:02:55,178 32k INFO ====> Epoch: 5
2023-02-10 00:03:33,965 32k INFO Train Epoch: 6 [26%]
2023-02-10 00:03:33,965 32k INFO [2.6587367057800293, 2.2601664066314697, 11.51845932006836, 20.874536514282227, 1.2725728750228882, 400, 9.993751562304699e-05]
2023-02-10 00:04:19,925 32k INFO ====> Epoch: 6
2023-02-10 00:05:44,080 32k INFO ====> Epoch: 7
2023-02-10 00:07:02,071 32k INFO Train Epoch: 8 [89%]
2023-02-10 00:07:02,071 32k INFO [2.6835384368896484, 2.130737543106079, 6.842741966247559, 16.306140899658203, 1.2471444606781006, 600, 9.991253280566489e-05]
2023-02-10 00:07:08,670 32k INFO ====> Epoch: 8
2023-02-10 00:08:32,953 32k INFO ====> Epoch: 9
2023-02-10 00:09:58,155 32k INFO ====> Epoch: 10
2023-02-10 00:10:53,121 32k INFO Train Epoch: 11 [53%]
2023-02-10 00:10:53,121 32k INFO [2.508908271789551, 2.226515769958496, 10.416086196899414, 16.404212951660156, 0.9339253306388855, 800, 9.987507028906759e-05]
2023-02-10 00:11:22,660 32k INFO ====> Epoch: 11
2023-02-10 00:12:46,946 32k INFO ====> Epoch: 12
2023-02-10 00:14:11,203 32k INFO ====> Epoch: 13
2023-02-10 00:14:43,324 32k INFO Train Epoch: 14 [16%]
2023-02-10 00:14:43,324 32k INFO [2.2750678062438965, 2.470716714859009, 11.370126724243164, 16.513538360595703, 1.350426197052002, 1000, 9.983762181915804e-05]
2023-02-10 00:14:47,828 32k INFO Saving model and optimizer state at iteration 14 to ./logs\32k\G_1000.pth
2023-02-10 00:15:06,487 32k INFO Saving model and optimizer state at iteration 14 to ./logs\32k\D_1000.pth
2023-02-10 00:16:02,684 32k INFO ====> Epoch: 14
2023-02-10 00:17:27,130 32k INFO ====> Epoch: 15
2023-02-10 00:18:38,765 32k INFO Train Epoch: 16 [79%]
2023-02-10 00:18:38,766 32k INFO [2.3250410556793213, 2.5265045166015625, 12.642312049865723, 18.580968856811523, 1.06544029712677, 1200, 9.981266397366609e-05]
2023-02-10 00:18:51,825 32k INFO ====> Epoch: 16
2023-02-10 00:20:16,238 32k INFO ====> Epoch: 17
2023-02-10 00:21:40,479 32k INFO ====> Epoch: 18
2023-02-10 00:22:29,060 32k INFO Train Epoch: 19 [42%]
2023-02-10 00:22:29,061 32k INFO [2.718174457550049, 2.224525213241577, 9.797636985778809, 13.11706256866455, 0.9313941597938538, 1400, 9.977523890319963e-05]
2023-02-10 00:23:05,152 32k INFO ====> Epoch: 19
2023-02-10 00:24:29,510 32k INFO ====> Epoch: 20
2023-02-10 00:25:53,829 32k INFO ====> Epoch: 21
2023-02-10 00:26:19,301 32k INFO Train Epoch: 22 [5%]
2023-02-10 00:26:19,301 32k INFO [2.4931561946868896, 2.2891364097595215, 5.325507164001465, 14.156054496765137, 0.7020604610443115, 1600, 9.973782786538036e-05]
2023-02-10 00:27:18,459 32k INFO ====> Epoch: 22
2023-02-10 00:28:42,594 32k INFO ====> Epoch: 23
2023-02-10 00:29:47,519 32k INFO Train Epoch: 24 [68%]
2023-02-10 00:29:47,519 32k INFO [2.5088696479797363, 2.6265249252319336, 7.155318737030029, 11.276984214782715, 0.6565865278244019, 1800, 9.971289496681757e-05]
2023-02-10 00:30:07,171 32k INFO ====> Epoch: 24
2023-02-10 00:31:31,461 32k INFO ====> Epoch: 25
2023-02-10 00:32:55,740 32k INFO ====> Epoch: 26
2023-02-10 00:33:37,761 32k INFO Train Epoch: 27 [32%]
2023-02-10 00:33:37,761 32k INFO [2.3180291652679443, 2.524212598800659, 11.95003890991211, 18.545923233032227, 0.6431781053543091, 2000, 9.967550730505221e-05]
2023-02-10 00:33:42,280 32k INFO Saving model and optimizer state at iteration 27 to ./logs\32k\G_2000.pth
2023-02-10 00:33:59,554 32k INFO Saving model and optimizer state at iteration 27 to ./logs\32k\D_2000.pth
2023-02-10 00:34:45,750 32k INFO ====> Epoch: 27
2023-02-10 00:36:10,183 32k INFO ====> Epoch: 28
2023-02-10 00:37:32,059 32k INFO Train Epoch: 29 [95%]
2023-02-10 00:37:32,059 32k INFO [2.533724784851074, 2.297114133834839, 9.978306770324707, 15.051481246948242, 0.5844590067863464, 2200, 9.965058998565574e-05]
2023-02-10 00:37:35,283 32k INFO ====> Epoch: 29
2023-02-10 00:39:00,123 32k INFO ====> Epoch: 30
2023-02-10 00:40:24,839 32k INFO ====> Epoch: 31
2023-02-10 00:41:23,329 32k INFO Train Epoch: 32 [58%]
2023-02-10 00:41:23,329 32k INFO [2.198890447616577, 2.618730068206787, 10.582822799682617, 15.83022689819336, 0.8572500348091125, 2400, 9.961322568533789e-05]
2023-02-10 00:41:49,677 32k INFO ====> Epoch: 32
2023-02-10 00:43:14,179 32k INFO ====> Epoch: 33
2023-02-10 00:44:38,626 32k INFO ====> Epoch: 34
2023-02-10 00:45:14,097 32k INFO Train Epoch: 35 [21%]
2023-02-10 00:45:14,098 32k INFO [2.8067591190338135, 2.2793397903442383, 7.9753804206848145, 11.641331672668457, 1.0224435329437256, 2600, 9.957587539488128e-05]
2023-02-10 00:46:03,586 32k INFO ====> Epoch: 35
2023-02-10 00:47:27,999 32k INFO ====> Epoch: 36
2023-02-10 00:48:42,929 32k INFO Train Epoch: 37 [84%]
2023-02-10 00:48:42,930 32k INFO [2.4459195137023926, 2.123002767562866, 10.907198905944824, 16.264312744140625, 0.6869288682937622, 2800, 9.95509829819056e-05]
2023-02-10 00:48:52,746 32k INFO ====> Epoch: 37
2023-02-10 00:50:17,223 32k INFO ====> Epoch: 38
2023-02-10 00:51:41,864 32k INFO ====> Epoch: 39
2023-02-10 00:52:33,774 32k INFO Train Epoch: 40 [47%]
2023-02-10 00:52:33,774 32k INFO [2.385266065597534, 2.274216651916504, 10.997411727905273, 16.773902893066406, 0.8327657580375671, 3000, 9.951365602954526e-05]
2023-02-10 00:52:38,348 32k INFO Saving model and optimizer state at iteration 40 to ./logs\32k\G_3000.pth
2023-02-10 00:52:57,291 32k INFO Saving model and optimizer state at iteration 40 to ./logs\32k\D_3000.pth
2023-02-10 00:53:33,533 32k INFO ====> Epoch: 40
2023-02-10 00:54:58,115 32k INFO ====> Epoch: 41
2023-02-10 00:56:22,645 32k INFO ====> Epoch: 42
2023-02-10 00:56:51,489 32k INFO Train Epoch: 43 [11%]
2023-02-10 00:56:51,490 32k INFO [2.287508249282837, 2.692063331604004, 9.70651626586914, 16.967220306396484, 0.798807680606842, 3200, 9.947634307304244e-05]
2023-02-10 00:57:47,480 32k INFO ====> Epoch: 43
2023-02-10 00:59:12,119 32k INFO ====> Epoch: 44
2023-02-10 01:00:20,508 32k INFO Train Epoch: 45 [74%]
2023-02-10 01:00:20,509 32k INFO [2.249314785003662, 2.683621883392334, 9.802401542663574, 17.789817810058594, 0.4752405881881714, 3400, 9.945147554159202e-05]
2023-02-10 01:00:36,926 32k INFO ====> Epoch: 45
2023-02-10 01:02:01,330 32k INFO ====> Epoch: 46
2023-02-10 01:03:25,782 32k INFO ====> Epoch: 47
2023-02-10 01:04:11,005 32k INFO Train Epoch: 48 [37%]
2023-02-10 01:04:11,006 32k INFO [2.2856054306030273, 2.5306761264801025, 9.405101776123047, 14.461358070373535, 0.6637941002845764, 3600, 9.941418589985758e-05]
2023-02-10 01:04:50,618 32k INFO ====> Epoch: 48
2023-02-10 01:06:16,153 32k INFO ====> Epoch: 49
2023-02-10 01:07:40,668 32k INFO ====> Epoch: 50
2023-02-10 01:08:02,827 32k INFO Train Epoch: 51 [0%]
2023-02-10 01:08:02,827 32k INFO [2.449678659439087, 2.3578238487243652, 10.553171157836914, 16.373308181762695, 1.1569361686706543, 3800, 9.937691023999092e-05]
2023-02-10 01:09:05,476 32k INFO ====> Epoch: 51
2023-02-10 01:10:29,887 32k INFO ====> Epoch: 52
2023-02-10 01:11:31,703 32k INFO Train Epoch: 53 [63%]
2023-02-10 01:11:31,703 32k INFO [2.4566311836242676, 2.3078484535217285, 9.267095565795898, 14.384586334228516, 0.9955094456672668, 4000, 9.935206756519513e-05]
2023-02-10 01:11:36,151 32k INFO Saving model and optimizer state at iteration 53 to ./logs\32k\G_4000.pth
2023-02-10 01:11:53,677 32k INFO Saving model and optimizer state at iteration 53 to ./logs\32k\D_4000.pth
2023-02-10 01:12:20,483 32k INFO ====> Epoch: 53
2023-02-10 01:13:45,174 32k INFO ====> Epoch: 54
2023-02-10 01:15:09,860 32k INFO ====> Epoch: 55
2023-02-10 01:15:48,458 32k INFO Train Epoch: 56 [26%]
2023-02-10 01:15:48,458 32k INFO [2.2449021339416504, 2.2987923622131348, 10.592050552368164, 14.990753173828125, 0.2585275173187256, 4200, 9.931481519679228e-05]
2023-02-10 01:16:34,690 32k INFO ====> Epoch: 56
2023-02-10 01:17:59,199 32k INFO ====> Epoch: 57
2023-02-10 01:19:17,517 32k INFO Train Epoch: 58 [89%]
2023-02-10 01:19:17,518 32k INFO [2.7950096130371094, 2.033355236053467, 6.349589824676514, 13.051651000976562, 0.41371816396713257, 4400, 9.928998804478705e-05]
2023-02-10 01:19:24,069 32k INFO ====> Epoch: 58
2023-02-10 01:20:48,652 32k INFO ====> Epoch: 59
2023-02-10 01:22:13,434 32k INFO ====> Epoch: 60
2023-02-10 01:23:08,515 32k INFO Train Epoch: 61 [53%]
2023-02-10 01:23:08,516 32k INFO [2.509904146194458, 2.3118839263916016, 10.964993476867676, 18.20663833618164, 0.8472650647163391, 4600, 9.92527589532945e-05]
2023-02-10 01:23:38,264 32k INFO ====> Epoch: 61
2023-02-10 01:25:02,945 32k INFO ====> Epoch: 62
2023-02-10 01:26:27,685 32k INFO ====> Epoch: 63
2023-02-10 01:26:59,803 32k INFO Train Epoch: 64 [16%]
2023-02-10 01:26:59,803 32k INFO [2.302783489227295, 2.5982413291931152, 10.80894660949707, 14.60811996459961, 1.0399219989776611, 4800, 9.921554382096622e-05]
2023-02-10 01:27:52,584 32k INFO ====> Epoch: 64
2023-02-10 01:29:17,080 32k INFO ====> Epoch: 65
2023-02-10 01:30:28,770 32k INFO Train Epoch: 66 [79%]
2023-02-10 01:30:28,770 32k INFO [2.7284963130950928, 2.3790788650512695, 9.036128044128418, 13.677116394042969, 0.6173059940338135, 5000, 9.919074148525384e-05]
2023-02-10 01:30:33,203 32k INFO Saving model and optimizer state at iteration 66 to ./logs\32k\G_5000.pth
2023-02-10 01:30:50,085 32k INFO Saving model and optimizer state at iteration 66 to ./logs\32k\D_5000.pth
2023-02-10 01:31:06,739 32k INFO ====> Epoch: 66
2023-02-10 01:32:31,353 32k INFO ====> Epoch: 67
2023-02-10 01:33:57,529 32k INFO ====> Epoch: 68
2023-02-10 01:34:46,261 32k INFO Train Epoch: 69 [42%]
2023-02-10 01:34:46,262 32k INFO [2.5467963218688965, 2.0986404418945312, 10.101814270019531, 14.508784294128418, 1.3656277656555176, 5200, 9.915354960656915e-05]
2023-02-10 01:35:22,514 32k INFO ====> Epoch: 69
2023-02-10 01:36:47,135 32k INFO ====> Epoch: 70
2023-02-10 01:38:11,576 32k INFO ====> Epoch: 71
2023-02-10 01:38:37,123 32k INFO Train Epoch: 72 [5%]
2023-02-10 01:38:37,123 32k INFO [1.857373833656311, 3.1599011421203613, 8.379103660583496, 9.244300842285156, 1.2350279092788696, 5400, 9.911637167309565e-05]
2023-02-10 01:39:36,388 32k INFO ====> Epoch: 72
2023-02-10 01:41:00,864 32k INFO ====> Epoch: 73
2023-02-10 01:42:05,899 32k INFO Train Epoch: 74 [68%]
2023-02-10 01:42:05,900 32k INFO [2.3246712684631348, 2.638263463973999, 7.793229579925537, 13.017571449279785, 0.9624058604240417, 5600, 9.909159412887068e-05]
2023-02-10 01:42:25,722 32k INFO ====> Epoch: 74
2023-02-10 01:43:50,155 32k INFO ====> Epoch: 75
2023-02-10 01:45:14,883 32k INFO ====> Epoch: 76
2023-02-10 01:45:56,818 32k INFO Train Epoch: 77 [32%]
2023-02-10 01:45:56,818 32k INFO [2.2799293994903564, 2.503884792327881, 12.849569320678711, 18.74350929260254, 0.9742995500564575, 5800, 9.905443942579728e-05]
2023-02-10 01:46:39,621 32k INFO ====> Epoch: 77
2023-02-10 01:48:04,267 32k INFO ====> Epoch: 78
2023-02-10 01:49:25,876 32k INFO Train Epoch: 79 [95%]
2023-02-10 01:49:25,876 32k INFO [2.3028907775878906, 2.451934337615967, 11.012730598449707, 17.174062728881836, 0.7448775768280029, 6000, 9.902967736366644e-05]
2023-02-10 01:49:30,404 32k INFO Saving model and optimizer state at iteration 79 to ./logs\32k\G_6000.pth
2023-02-10 01:49:47,910 32k INFO Saving model and optimizer state at iteration 79 to ./logs\32k\D_6000.pth
2023-02-10 01:49:54,757 32k INFO ====> Epoch: 79
2023-02-10 01:51:19,458 32k INFO ====> Epoch: 80
2023-02-10 01:52:44,119 32k INFO ====> Epoch: 81
2023-02-10 01:53:42,673 32k INFO Train Epoch: 82 [58%]
2023-02-10 01:53:42,674 32k INFO [2.279362201690674, 2.260122776031494, 8.51861572265625, 12.269641876220703, 0.7776111960411072, 6200, 9.899254587647776e-05]
2023-02-10 01:54:09,077 32k INFO ====> Epoch: 82
2023-02-10 01:55:33,754 32k INFO ====> Epoch: 83
2023-02-10 01:56:58,300 32k INFO ====> Epoch: 84
2023-02-10 01:57:33,593 32k INFO Train Epoch: 85 [21%]
2023-02-10 01:57:33,594 32k INFO [2.6448638439178467, 2.2926855087280273, 11.688180923461914, 18.19353675842285, 0.9365038275718689, 6400, 9.895542831185631e-05]
2023-02-10 01:58:23,117 32k INFO ====> Epoch: 85
2023-02-10 01:59:47,507 32k INFO ====> Epoch: 86
2023-02-10 02:01:02,283 32k INFO Train Epoch: 87 [84%]
2023-02-10 02:01:02,283 32k INFO [2.427564859390259, 2.242896556854248, 11.131178855895996, 16.051637649536133, 0.914648711681366, 6600, 9.89306910009569e-05]
2023-02-10 02:01:12,207 32k INFO ====> Epoch: 87
2023-02-10 02:02:36,685 32k INFO ====> Epoch: 88
2023-02-10 02:04:01,181 32k INFO ====> Epoch: 89
2023-02-10 02:04:52,920 32k INFO Train Epoch: 90 [47%]
2023-02-10 02:04:52,921 32k INFO [2.4379117488861084, 2.36348557472229, 8.932344436645508, 16.195209503173828, 0.8471890091896057, 6800, 9.889359662901445e-05]
2023-02-10 02:05:25,823 32k INFO ====> Epoch: 90
2023-02-10 02:06:50,173 32k INFO ====> Epoch: 91
2023-02-10 02:08:14,749 32k INFO ====> Epoch: 92
2023-02-10 02:08:43,328 32k INFO Train Epoch: 93 [11%]
2023-02-10 02:08:43,329 32k INFO [2.467284917831421, 2.144986391067505, 11.449904441833496, 16.176807403564453, 0.4319636821746826, 7000, 9.885651616572276e-05]
2023-02-10 02:08:47,768 32k INFO Saving model and optimizer state at iteration 93 to ./logs\32k\G_7000.pth
2023-02-10 02:09:04,812 32k INFO Saving model and optimizer state at iteration 93 to ./logs\32k\D_7000.pth
2023-02-10 02:10:04,543 32k INFO ====> Epoch: 93
2023-02-10 02:11:29,241 32k INFO ====> Epoch: 94
2023-02-10 02:12:37,720 32k INFO Train Epoch: 95 [74%]
2023-02-10 02:12:37,720 32k INFO [2.2731475830078125, 2.425633430480957, 10.031761169433594, 14.7035493850708, 0.8044810891151428, 7200, 9.883180358131438e-05]
2023-02-10 02:12:54,162 32k INFO ====> Epoch: 95
2023-02-10 02:14:18,638 32k INFO ====> Epoch: 96
2023-02-10 02:15:42,921 32k INFO ====> Epoch: 97
2023-02-10 02:16:28,193 32k INFO Train Epoch: 98 [37%]
2023-02-10 02:16:28,194 32k INFO [2.3223936557769775, 2.573565721511841, 10.411147117614746, 19.68339729309082, 0.5216219425201416, 7400, 9.879474628751914e-05]
2023-02-10 02:17:07,685 32k INFO ====> Epoch: 98
2023-02-10 02:18:32,253 32k INFO ====> Epoch: 99
2023-02-10 02:19:56,642 32k INFO ====> Epoch: 100
2023-02-10 02:20:18,741 32k INFO Train Epoch: 101 [0%]
2023-02-10 02:20:18,742 32k INFO [2.397695541381836, 2.1934003829956055, 8.183572769165039, 12.770599365234375, 1.0327764749526978, 7600, 9.875770288847208e-05]
2023-02-10 02:21:21,459 32k INFO ====> Epoch: 101
2023-02-10 02:22:46,182 32k INFO ====> Epoch: 102
2023-02-10 02:23:47,848 32k INFO Train Epoch: 103 [63%]
2023-02-10 02:23:47,848 32k INFO [2.461080312728882, 2.3870487213134766, 6.649186134338379, 10.037254333496094, 0.8956831693649292, 7800, 9.873301500583906e-05]
2023-02-10 02:24:10,873 32k INFO ====> Epoch: 103
2023-02-10 02:25:35,259 32k INFO ====> Epoch: 104
2023-02-10 02:26:59,649 32k INFO ====> Epoch: 105
2023-02-10 02:27:38,326 32k INFO Train Epoch: 106 [26%]
2023-02-10 02:27:38,327 32k INFO [1.846121072769165, 3.3351776599884033, 8.606220245361328, 9.130136489868164, 0.8224015831947327, 8000, 9.86959947531291e-05]
2023-02-10 02:27:42,852 32k INFO Saving model and optimizer state at iteration 106 to ./logs\32k\G_8000.pth
2023-02-10 02:28:02,191 32k INFO Saving model and optimizer state at iteration 106 to ./logs\32k\D_8000.pth
2023-02-10 02:28:52,049 32k INFO ====> Epoch: 106
2023-02-10 02:30:17,599 32k INFO ====> Epoch: 107
2023-02-10 02:31:35,925 32k INFO Train Epoch: 108 [89%]
2023-02-10 02:31:35,925 32k INFO [2.4512813091278076, 2.255336046218872, 7.023709297180176, 11.943727493286133, 0.9954293370246887, 8200, 9.867132229656573e-05]
2023-02-10 02:31:42,471 32k INFO ====> Epoch: 108
2023-02-10 02:33:07,180 32k INFO ====> Epoch: 109
2023-02-10 02:34:31,690 32k INFO ====> Epoch: 110
2023-02-10 02:35:26,947 32k INFO Train Epoch: 111 [53%]
2023-02-10 02:35:26,947 32k INFO [2.391657590866089, 2.3984644412994385, 13.551353454589844, 14.703734397888184, 0.9091495871543884, 8400, 9.863432517573002e-05]
2023-02-10 02:35:56,571 32k INFO ====> Epoch: 111
2023-02-10 02:37:21,163 32k INFO ====> Epoch: 112
2023-02-10 02:38:45,688 32k INFO ====> Epoch: 113
2023-02-10 02:39:17,654 32k INFO Train Epoch: 114 [16%]
2023-02-10 02:39:17,655 32k INFO [2.39654278755188, 2.245805263519287, 10.06233024597168, 14.09300708770752, 0.6480247974395752, 8600, 9.859734192708044e-05]
2023-02-10 02:40:10,405 32k INFO ====> Epoch: 114
2023-02-10 02:41:34,622 32k INFO ====> Epoch: 115
2023-02-10 02:42:46,274 32k INFO Train Epoch: 116 [79%]
2023-02-10 02:42:46,274 32k INFO [2.5749049186706543, 2.414797306060791, 9.960501670837402, 16.4396915435791, 0.789290189743042, 8800, 9.857269413218213e-05]
2023-02-10 02:42:59,471 32k INFO ====> Epoch: 116
2023-02-10 02:44:24,046 32k INFO ====> Epoch: 117
2023-02-10 02:45:48,517 32k INFO ====> Epoch: 118
2023-02-10 02:46:37,109 32k INFO Train Epoch: 119 [42%]
2023-02-10 02:46:37,109 32k INFO [2.4546942710876465, 2.1338768005371094, 12.899450302124023, 15.397659301757812, 0.8034476637840271, 9000, 9.853573399228505e-05]
2023-02-10 02:46:41,546 32k INFO Saving model and optimizer state at iteration 119 to ./logs\32k\G_9000.pth
2023-02-10 02:47:01,129 32k INFO Saving model and optimizer state at iteration 119 to ./logs\32k\D_9000.pth
2023-02-10 02:47:40,886 32k INFO ====> Epoch: 119
2023-02-10 02:49:05,371 32k INFO ====> Epoch: 120
2023-02-10 02:50:29,859 32k INFO ====> Epoch: 121
2023-02-10 02:50:55,463 32k INFO Train Epoch: 122 [5%]
2023-02-10 02:50:55,463 32k INFO [2.207282543182373, 2.6213908195495605, 7.647693634033203, 14.46692180633545, 0.9529262185096741, 9200, 9.8498787710708e-05]
2023-02-10 02:51:55,210 32k INFO ====> Epoch: 122
2023-02-10 02:53:19,953 32k INFO ====> Epoch: 123
2023-02-10 02:54:25,092 32k INFO Train Epoch: 124 [68%]
2023-02-10 02:54:25,093 32k INFO [2.332580089569092, 2.3436594009399414, 6.139850616455078, 10.373167037963867, 0.9625253677368164, 9400, 9.847416455282387e-05]
2023-02-10 02:54:44,808 32k INFO ====> Epoch: 124
2023-02-10 02:56:09,403 32k INFO ====> Epoch: 125
2023-02-10 02:57:35,700 32k INFO ====> Epoch: 126
2023-02-10 02:58:17,551 32k INFO Train Epoch: 127 [32%]
2023-02-10 02:58:17,552 32k INFO [2.467034339904785, 2.2089598178863525, 7.952523708343506, 16.058887481689453, 0.8524291515350342, 9600, 9.84372413569007e-05]
2023-02-10 02:59:00,413 32k INFO ====> Epoch: 127
2023-02-10 03:00:24,954 32k INFO ====> Epoch: 128
2023-02-10 03:01:46,396 32k INFO Train Epoch: 129 [95%]
2023-02-10 03:01:46,397 32k INFO [2.367544174194336, 2.7189576625823975, 6.78631591796875, 12.748686790466309, 0.4685216546058655, 9800, 9.841263358464336e-05]
2023-02-10 03:01:49,616 32k INFO ====> Epoch: 129
2023-02-10 03:03:14,271 32k INFO ====> Epoch: 130
2023-02-10 03:04:38,789 32k INFO ====> Epoch: 131
2023-02-10 03:05:37,230 32k INFO Train Epoch: 132 [58%]
2023-02-10 03:05:37,231 32k INFO [2.4509665966033936, 2.7042665481567383, 10.243302345275879, 13.67796802520752, 0.6009257435798645, 10000, 9.837573345994909e-05]
2023-02-10 03:05:41,749 32k INFO Saving model and optimizer state at iteration 132 to ./logs\32k\G_10000.pth
2023-02-10 03:05:58,430 32k INFO Saving model and optimizer state at iteration 132 to ./logs\32k\D_10000.pth
2023-02-10 03:06:28,668 32k INFO ====> Epoch: 132
2023-02-10 03:07:54,369 32k INFO ====> Epoch: 133
2023-02-10 03:09:19,084 32k INFO ====> Epoch: 134
2023-02-10 03:09:54,319 32k INFO Train Epoch: 135 [21%]
2023-02-10 03:09:54,319 32k INFO [2.5057411193847656, 2.4407787322998047, 9.817587852478027, 13.728426933288574, 0.6413305997848511, 10200, 9.833884717107196e-05]
2023-02-10 03:10:43,813 32k INFO ====> Epoch: 135
2023-02-10 03:12:08,539 32k INFO ====> Epoch: 136
2023-02-10 03:13:23,629 32k INFO Train Epoch: 137 [84%]
2023-02-10 03:13:23,629 32k INFO [2.5296790599823, 2.208813190460205, 6.762031078338623, 10.408514976501465, 0.754698634147644, 10400, 9.831426399582366e-05]
2023-02-10 03:13:33,495 32k INFO ====> Epoch: 137
2023-02-10 03:14:58,219 32k INFO ====> Epoch: 138
2023-02-10 03:16:22,869 32k INFO ====> Epoch: 139
2023-02-10 03:17:14,809 32k INFO Train Epoch: 140 [47%]
2023-02-10 03:17:14,809 32k INFO [2.5353844165802, 2.2106950283050537, 10.004817008972168, 13.992541313171387, 0.6150087714195251, 10600, 9.827740075511432e-05]
2023-02-10 03:17:47,789 32k INFO ====> Epoch: 140
2023-02-10 03:19:12,269 32k INFO ====> Epoch: 141
2023-02-10 03:20:36,797 32k INFO ====> Epoch: 142
2023-02-10 03:21:05,474 32k INFO Train Epoch: 143 [11%]
2023-02-10 03:21:05,475 32k INFO [2.335813522338867, 2.381714344024658, 9.432477951049805, 14.522370338439941, 0.697417140007019, 10800, 9.824055133639235e-05]
2023-02-10 03:22:01,624 32k INFO ====> Epoch: 143
2023-02-10 03:23:26,232 32k INFO ====> Epoch: 144
2023-02-10 03:24:34,537 32k INFO Train Epoch: 145 [74%]
2023-02-10 03:24:34,538 32k INFO [1.924493670463562, 3.025908946990967, 10.635231018066406, 12.46295166015625, 0.3505359888076782, 11000, 9.821599273356685e-05]
2023-02-10 03:24:39,057 32k INFO Saving model and optimizer state at iteration 145 to ./logs\32k\G_11000.pth
2023-02-10 03:24:57,871 32k INFO Saving model and optimizer state at iteration 145 to ./logs\32k\D_11000.pth
2023-02-10 03:25:18,230 32k INFO ====> Epoch: 145
2023-02-10 03:26:42,920 32k INFO ====> Epoch: 146
2023-02-10 03:28:07,571 32k INFO ====> Epoch: 147
2023-02-10 03:28:52,871 32k INFO Train Epoch: 148 [37%]
2023-02-10 03:28:52,872 32k INFO [2.568720579147339, 2.2338619232177734, 6.399820327758789, 12.950323104858398, 0.9168809056282043, 11200, 9.817916633997459e-05]
2023-02-10 03:29:32,512 32k INFO ====> Epoch: 148
2023-02-10 03:30:57,311 32k INFO ====> Epoch: 149
2023-02-10 03:32:22,084 32k INFO ====> Epoch: 150
2023-02-10 03:32:44,293 32k INFO Train Epoch: 151 [0%]
2023-02-10 03:32:44,293 32k INFO [2.3033745288848877, 2.415085792541504, 10.928938865661621, 16.1735897064209, 0.3847680985927582, 11400, 9.814235375455375e-05]
2023-02-10 03:33:47,215 32k INFO ====> Epoch: 151
2023-02-10 03:35:11,867 32k INFO ====> Epoch: 152
2023-02-10 03:36:13,752 32k INFO Train Epoch: 153 [63%]
2023-02-10 03:36:13,753 32k INFO [2.173736333847046, 2.650914192199707, 12.767165184020996, 18.795696258544922, 0.4320840835571289, 11600, 9.811781969958938e-05]
2023-02-10 03:36:36,873 32k INFO ====> Epoch: 153
2023-02-10 03:38:01,486 32k INFO ====> Epoch: 154
2023-02-10 03:39:26,006 32k INFO ====> Epoch: 155
2023-02-10 03:40:04,581 32k INFO Train Epoch: 156 [26%]
2023-02-10 03:40:04,582 32k INFO [2.574475049972534, 2.363281488418579, 8.882105827331543, 10.567209243774414, 0.11711447685956955, 11800, 9.808103011628319e-05]
2023-02-10 03:40:50,861 32k INFO ====> Epoch: 156
2023-02-10 03:42:15,437 32k INFO ====> Epoch: 157
2023-02-10 03:43:33,696 32k INFO Train Epoch: 158 [89%]
2023-02-10 03:43:33,696 32k INFO [2.343777894973755, 2.4922895431518555, 10.256402969360352, 16.83711051940918, 0.874286413192749, 12000, 9.80565113912702e-05]
2023-02-10 03:43:38,306 32k INFO Saving model and optimizer state at iteration 158 to ./logs\32k\G_12000.pth
2023-02-10 03:43:55,136 32k INFO Saving model and optimizer state at iteration 158 to ./logs\32k\D_12000.pth
2023-02-10 03:44:05,409 32k INFO ====> Epoch: 158
2023-02-10 03:45:30,201 32k INFO ====> Epoch: 159
2023-02-10 03:46:54,691 32k INFO ====> Epoch: 160
2023-02-10 03:47:49,976 32k INFO Train Epoch: 161 [53%]
2023-02-10 03:47:49,976 32k INFO [2.596492290496826, 2.6639647483825684, 7.916460037231445, 15.857110977172852, 0.8963372707366943, 12200, 9.801974479570593e-05]
2023-02-10 03:48:19,643 32k INFO ====> Epoch: 161
2023-02-10 03:49:44,342 32k INFO ====> Epoch: 162
2023-02-10 03:51:09,047 32k INFO ====> Epoch: 163
2023-02-10 03:51:41,212 32k INFO Train Epoch: 164 [16%]
2023-02-10 03:51:41,212 32k INFO [2.252506971359253, 2.4695920944213867, 11.395182609558105, 16.45693016052246, 0.94123774766922, 12400, 9.798299198589162e-05]
2023-02-10 03:52:34,132 32k INFO ====> Epoch: 164
2023-02-10 03:53:59,347 32k INFO ====> Epoch: 165
2023-02-10 03:55:11,032 32k INFO Train Epoch: 166 [79%]
2023-02-10 03:55:11,032 32k INFO [2.5481297969818115, 2.5002939701080322, 10.718299865722656, 17.71586036682129, 0.3888394236564636, 12600, 9.795849776887939e-05]
2023-02-10 03:55:24,184 32k INFO ====> Epoch: 166
2023-02-10 03:56:48,762 32k INFO ====> Epoch: 167
2023-02-10 03:58:13,310 32k INFO ====> Epoch: 168
2023-02-10 03:59:01,779 32k INFO Train Epoch: 169 [42%]
2023-02-10 03:59:01,779 32k INFO [2.531505584716797, 1.924519658088684, 13.503902435302734, 16.02785301208496, 0.9448908567428589, 12800, 9.792176792382932e-05]
2023-02-10 03:59:38,066 32k INFO ====> Epoch: 169
2023-02-10 04:01:02,587 32k INFO ====> Epoch: 170
2023-02-10 04:02:27,100 32k INFO ====> Epoch: 171
2023-02-10 04:02:52,429 32k INFO Train Epoch: 172 [5%]
2023-02-10 04:02:52,430 32k INFO [2.5668065547943115, 2.419389247894287, 8.094529151916504, 14.7818603515625, 0.7867487072944641, 13000, 9.78850518507495e-05]
2023-02-10 04:02:56,916 32k INFO Saving model and optimizer state at iteration 172 to ./logs\32k\G_13000.pth
2023-02-10 04:03:14,363 32k INFO Saving model and optimizer state at iteration 172 to ./logs\32k\D_13000.pth
2023-02-10 04:04:17,632 32k INFO ====> Epoch: 172
2023-02-10 04:05:42,306 32k INFO ====> Epoch: 173
2023-02-10 04:06:47,480 32k INFO Train Epoch: 174 [68%]
2023-02-10 04:06:47,480 32k INFO [2.1723153591156006, 2.5889978408813477, 10.076593399047852, 12.853192329406738, 0.3051690459251404, 13200, 9.786058211724074e-05]
2023-02-10 04:07:07,239 32k INFO ====> Epoch: 174
2023-02-10 04:08:31,852 32k INFO ====> Epoch: 175
2023-02-10 04:09:56,580 32k INFO ====> Epoch: 176
2023-02-10 04:10:38,557 32k INFO Train Epoch: 177 [32%]
2023-02-10 04:10:38,558 32k INFO [2.395698070526123, 2.4369287490844727, 11.675952911376953, 15.961197853088379, 0.7354399561882019, 13400, 9.782388898597041e-05]
2023-02-10 04:11:21,538 32k INFO ====> Epoch: 177
2023-02-10 04:12:46,203 32k INFO ====> Epoch: 178
2023-02-10 04:14:07,776 32k INFO Train Epoch: 179 [95%]
2023-02-10 04:14:07,777 32k INFO [2.7345943450927734, 1.9628326892852783, 6.206479072570801, 7.970531940460205, 0.8745248913764954, 13600, 9.779943454222217e-05]
2023-02-10 04:14:10,989 32k INFO ====> Epoch: 179
2023-02-10 04:15:35,842 32k INFO ====> Epoch: 180
2023-02-10 04:17:00,411 32k INFO ====> Epoch: 181
2023-02-10 04:17:58,909 32k INFO Train Epoch: 182 [58%]
2023-02-10 04:17:58,909 32k INFO [2.2180511951446533, 2.461686372756958, 7.78315544128418, 12.147871971130371, 0.7892422080039978, 13800, 9.776276433842631e-05]
2023-02-10 04:18:25,267 32k INFO ====> Epoch: 182
2023-02-10 04:19:49,727 32k INFO ====> Epoch: 183
2023-02-10 04:21:14,382 32k INFO ====> Epoch: 184
2023-02-10 04:21:49,851 32k INFO Train Epoch: 185 [21%]
2023-02-10 04:21:49,851 32k INFO [2.5905978679656982, 2.213409185409546, 9.200039863586426, 12.909902572631836, 0.1616513580083847, 14000, 9.772610788423802e-05]
2023-02-10 04:21:54,470 32k INFO Saving model and optimizer state at iteration 185 to ./logs\32k\G_14000.pth
2023-02-10 04:22:11,052 32k INFO Saving model and optimizer state at iteration 185 to ./logs\32k\D_14000.pth
2023-02-10 04:23:03,696 32k INFO ====> Epoch: 185
2023-02-10 04:24:28,374 32k INFO ====> Epoch: 186
2023-02-10 04:25:43,503 32k INFO Train Epoch: 187 [84%]
2023-02-10 04:25:43,504 32k INFO [2.115373134613037, 2.6405253410339355, 13.0419340133667, 17.158859252929688, 0.6063501238822937, 14200, 9.77016778842374e-05]
2023-02-10 04:25:53,337 32k INFO ====> Epoch: 187
2023-02-10 04:27:18,024 32k INFO ====> Epoch: 188
2023-02-10 04:28:42,529 32k INFO ====> Epoch: 189
2023-02-10 04:29:34,368 32k INFO Train Epoch: 190 [47%]
2023-02-10 04:29:34,368 32k INFO [2.0680086612701416, 3.0300402641296387, 8.614965438842773, 12.649006843566895, 0.691765546798706, 14400, 9.766504433460612e-05]
2023-02-10 04:30:07,450 32k INFO ====> Epoch: 190
2023-02-10 04:31:32,088 32k INFO ====> Epoch: 191
2023-02-10 04:32:56,573 32k INFO ====> Epoch: 192
2023-02-10 04:33:25,364 32k INFO Train Epoch: 193 [11%]
2023-02-10 04:33:25,365 32k INFO [2.3075990676879883, 2.3698666095733643, 14.287137985229492, 16.29629135131836, 0.5351936221122742, 14600, 9.762842452083883e-05]
2023-02-10 04:34:21,439 32k INFO ====> Epoch: 193
2023-02-10 04:35:46,041 32k INFO ====> Epoch: 194
2023-02-10 04:36:54,340 32k INFO Train Epoch: 195 [74%]
2023-02-10 04:36:54,341 32k INFO [2.3796615600585938, 2.2257769107818604, 9.005014419555664, 12.171199798583984, 0.7831335067749023, 14800, 9.760401894015275e-05]
2023-02-10 04:37:10,784 32k INFO ====> Epoch: 195
2023-02-10 04:38:35,380 32k INFO ====> Epoch: 196
2023-02-10 04:39:59,882 32k INFO ====> Epoch: 197
2023-02-10 04:40:45,368 32k INFO Train Epoch: 198 [37%]
2023-02-10 04:40:45,368 32k INFO [2.5116686820983887, 2.4769821166992188, 9.495701789855957, 15.055347442626953, 0.6151214241981506, 15000, 9.756742200804793e-05]
2023-02-10 04:40:49,881 32k INFO Saving model and optimizer state at iteration 198 to ./logs\32k\G_15000.pth
2023-02-10 04:41:08,000 32k INFO Saving model and optimizer state at iteration 198 to ./logs\32k\D_15000.pth
2023-02-10 04:41:51,223 32k INFO ====> Epoch: 198
2023-02-10 04:43:15,797 32k INFO ====> Epoch: 199
2023-02-10 04:44:40,469 32k INFO ====> Epoch: 200
2023-02-10 04:45:02,531 32k INFO Train Epoch: 201 [0%]
2023-02-10 04:45:02,531 32k INFO [2.66977858543396, 2.327565908432007, 8.785197257995605, 12.054095268249512, 0.33490169048309326, 15200, 9.753083879807726e-05]
2023-02-10 04:46:05,243 32k INFO ====> Epoch: 201
2023-02-10 04:47:29,831 32k INFO ====> Epoch: 202
2023-02-10 04:48:31,669 32k INFO Train Epoch: 203 [63%]
2023-02-10 04:48:31,669 32k INFO [2.4113712310791016, 2.208491325378418, 7.582664966583252, 10.762511253356934, 0.24080340564250946, 15400, 9.750645761229709e-05]
2023-02-10 04:48:54,843 32k INFO ====> Epoch: 203
2023-02-10 04:50:20,441 32k INFO ====> Epoch: 204
2023-02-10 04:51:44,905 32k INFO ====> Epoch: 205
2023-02-10 04:52:23,595 32k INFO Train Epoch: 206 [26%]
2023-02-10 04:52:23,596 32k INFO [2.406938076019287, 2.329049587249756, 13.670656204223633, 15.57223129272461, 0.5972563028335571, 15600, 9.746989726111722e-05]
2023-02-10 04:53:09,786 32k INFO ====> Epoch: 206
2023-02-10 04:54:34,352 32k INFO ====> Epoch: 207
2023-02-10 04:55:52,644 32k INFO Train Epoch: 208 [89%]
2023-02-10 04:55:52,645 32k INFO [2.4009199142456055, 2.4792189598083496, 8.647868156433105, 13.368301391601562, 0.6690515875816345, 15800, 9.744553130976908e-05]
2023-02-10 04:55:59,209 32k INFO ====> Epoch: 208
2023-02-10 04:57:23,732 32k INFO ====> Epoch: 209
2023-02-10 04:58:48,239 32k INFO ====> Epoch: 210
2023-02-10 04:59:43,567 32k INFO Train Epoch: 211 [53%]
2023-02-10 04:59:43,567 32k INFO [2.491450309753418, 2.5477209091186523, 7.471154689788818, 13.8217191696167, 0.5033202767372131, 16000, 9.740899380309685e-05]
2023-02-10 04:59:47,998 32k INFO Saving model and optimizer state at iteration 211 to ./logs\32k\G_16000.pth
2023-02-10 05:00:05,780 32k INFO Saving model and optimizer state at iteration 211 to ./logs\32k\D_16000.pth
2023-02-10 05:00:39,185 32k INFO ====> Epoch: 211
2023-02-10 05:02:04,575 32k INFO ====> Epoch: 212
2023-02-10 05:03:29,926 32k INFO ====> Epoch: 213
2023-02-10 05:04:02,744 32k INFO Train Epoch: 214 [16%]
2023-02-10 05:04:02,744 32k INFO [2.5403432846069336, 2.3642735481262207, 10.938908576965332, 14.273392677307129, 0.46957525610923767, 16200, 9.7372469996277e-05]
2023-02-10 05:04:55,587 32k INFO ====> Epoch: 214
2023-02-10 05:06:20,137 32k INFO ====> Epoch: 215
2023-02-10 05:07:31,842 32k INFO Train Epoch: 216 [79%]
2023-02-10 05:07:31,842 32k INFO [2.339552879333496, 2.709596872329712, 11.353394508361816, 18.01609992980957, 0.5840747356414795, 16400, 9.734812840022278e-05]
2023-02-10 05:07:45,003 32k INFO ====> Epoch: 216
2023-02-10 05:09:10,461 32k INFO ====> Epoch: 217
2023-02-10 05:10:35,839 32k INFO ====> Epoch: 218
2023-02-10 05:11:24,387 32k INFO Train Epoch: 219 [42%]
2023-02-10 05:11:24,387 32k INFO [2.4308414459228516, 2.6758008003234863, 9.025983810424805, 12.856972694396973, 0.7895928621292114, 16600, 9.731162741507607e-05]
2023-02-10 05:12:00,773 32k INFO ====> Epoch: 219
2023-02-10 05:13:26,131 32k INFO ====> Epoch: 220
2023-02-10 05:14:50,815 32k INFO ====> Epoch: 221
2023-02-10 05:15:16,163 32k INFO Train Epoch: 222 [5%]
2023-02-10 05:15:16,163 32k INFO [2.519866704940796, 2.3976869583129883, 6.224302768707275, 9.703218460083008, 0.8612720966339111, 16800, 9.727514011608789e-05]
2023-02-10 05:16:15,647 32k INFO ====> Epoch: 222
2023-02-10 05:17:41,078 32k INFO ====> Epoch: 223
2023-02-10 05:18:46,053 32k INFO Train Epoch: 224 [68%]
2023-02-10 05:18:46,053 32k INFO [2.6223254203796387, 1.9520517587661743, 4.571777820587158, 8.507990837097168, 0.792948305606842, 17000, 9.725082285098293e-05]
2023-02-10 05:18:50,420 32k INFO Saving model and optimizer state at iteration 224 to ./logs\32k\G_17000.pth
2023-02-10 05:19:09,845 32k INFO Saving model and optimizer state at iteration 224 to ./logs\32k\D_17000.pth
2023-02-10 05:19:33,204 32k INFO ====> Epoch: 224
2023-02-10 05:20:58,534 32k INFO ====> Epoch: 225
2023-02-10 05:22:23,931 32k INFO ====> Epoch: 226
2023-02-10 05:23:05,991 32k INFO Train Epoch: 227 [32%]
2023-02-10 05:23:05,991 32k INFO [2.3721673488616943, 2.349473476409912, 10.199991226196289, 15.970855712890625, 0.8750467300415039, 17200, 9.721435835085619e-05]
2023-02-10 05:23:48,977 32k INFO ====> Epoch: 227
2023-02-10 05:25:14,316 32k INFO ====> Epoch: 228
2023-02-10 05:26:35,734 32k INFO Train Epoch: 229 [95%]
2023-02-10 05:26:35,735 32k INFO [2.3928985595703125, 2.939208507537842, 17.157743453979492, 19.45735740661621, 0.6444438695907593, 17400, 9.719005628024282e-05]
2023-02-10 05:26:38,950 32k INFO ====> Epoch: 229
2023-02-10 05:28:04,250 32k INFO ====> Epoch: 230
2023-02-10 05:29:28,728 32k INFO ====> Epoch: 231
2023-02-10 05:30:28,074 32k INFO Train Epoch: 232 [58%]
2023-02-10 05:30:28,075 32k INFO [2.3620455265045166, 2.3724076747894287, 9.916801452636719, 15.793679237365723, 0.8138560652732849, 17600, 9.715361456473177e-05]
2023-02-10 05:30:54,438 32k INFO ====> Epoch: 232
2023-02-10 05:32:18,834 32k INFO ====> Epoch: 233
2023-02-10 05:33:43,436 32k INFO ====> Epoch: 234
2023-02-10 05:34:18,636 32k INFO Train Epoch: 235 [21%]
2023-02-10 05:34:18,636 32k INFO [2.421670913696289, 2.613611936569214, 10.162355422973633, 15.634803771972656, 0.8601481318473816, 17800, 9.711718651315591e-05]
2023-02-10 05:35:08,234 32k INFO ====> Epoch: 235
2023-02-10 05:36:32,671 32k INFO ====> Epoch: 236
2023-02-10 05:37:47,763 32k INFO Train Epoch: 237 [84%]
2023-02-10 05:37:47,764 32k INFO [2.3902554512023926, 2.546750783920288, 13.740601539611816, 15.754182815551758, 0.7283089756965637, 18000, 9.709290873398365e-05]
2023-02-10 05:37:52,211 32k INFO Saving model and optimizer state at iteration 237 to ./logs\32k\G_18000.pth
2023-02-10 05:38:05,355 32k INFO Saving model and optimizer state at iteration 237 to ./logs\32k\D_18000.pth
2023-02-10 05:38:18,717 32k INFO ====> Epoch: 237
2023-02-10 05:39:44,053 32k INFO ====> Epoch: 238
2023-02-10 05:41:09,330 32k INFO ====> Epoch: 239
2023-02-10 05:42:01,142 32k INFO Train Epoch: 240 [47%]
2023-02-10 05:42:01,143 32k INFO [2.312722682952881, 2.6106648445129395, 9.877479553222656, 15.368383407592773, 0.6470428109169006, 18200, 9.705650344424885e-05]
2023-02-10 05:42:34,235 32k INFO ====> Epoch: 240
2023-02-10 05:43:58,685 32k INFO ====> Epoch: 241
2023-02-10 05:45:23,999 32k INFO ====> Epoch: 242
2023-02-10 05:45:53,547 32k INFO Train Epoch: 243 [11%]
2023-02-10 05:45:53,547 32k INFO [2.3766026496887207, 2.4300293922424316, 12.744778633117676, 14.884074211120605, 0.6547593474388123, 18400, 9.702011180479129e-05]
2023-02-10 05:46:49,612 32k INFO ====> Epoch: 243
2023-02-10 05:48:15,106 32k INFO ====> Epoch: 244
2023-02-10 05:49:23,380 32k INFO Train Epoch: 245 [74%]
2023-02-10 05:49:23,380 32k INFO [2.580474376678467, 2.082796812057495, 9.039981842041016, 12.80046558380127, 0.5056825280189514, 18600, 9.699585829277933e-05]
2023-02-10 05:49:39,801 32k INFO ====> Epoch: 245
2023-02-10 05:51:04,233 32k INFO ====> Epoch: 246
2023-02-10 05:52:28,838 32k INFO ====> Epoch: 247
2023-02-10 05:53:14,110 32k INFO Train Epoch: 248 [37%]
2023-02-10 05:53:14,110 32k INFO [2.426253318786621, 2.482189416885376, 7.620111465454102, 7.9587178230285645, 0.5158562064170837, 18800, 9.695948939241093e-05]
2023-02-10 05:53:53,852 32k INFO ====> Epoch: 248
2023-02-10 05:55:18,546 32k INFO ====> Epoch: 249
2023-02-10 05:56:42,949 32k INFO ====> Epoch: 250
2023-02-10 05:57:05,033 32k INFO Train Epoch: 251 [0%]
2023-02-10 05:57:05,034 32k INFO [2.527033805847168, 2.064669370651245, 9.806694984436035, 12.288697242736816, 0.5984607934951782, 19000, 9.692313412867544e-05]
2023-02-10 05:57:09,464 32k INFO Saving model and optimizer state at iteration 251 to ./logs\32k\G_19000.pth
2023-02-10 05:57:24,997 32k INFO Saving model and optimizer state at iteration 251 to ./logs\32k\D_19000.pth
2023-02-10 05:58:31,373 32k INFO ====> Epoch: 251
2023-02-10 05:59:56,772 32k INFO ====> Epoch: 252
2023-02-10 06:00:59,380 32k INFO Train Epoch: 253 [63%]
2023-02-10 06:00:59,381 32k INFO [2.33793568611145, 2.2299203872680664, 7.934765815734863, 14.959351539611816, 0.5853436589241028, 19200, 9.689890485956725e-05]
2023-02-10 06:01:22,563 32k INFO ====> Epoch: 253
2023-02-10 06:02:47,113 32k INFO ====> Epoch: 254
2023-02-10 06:04:12,445 32k INFO ====> Epoch: 255
2023-02-10 06:04:51,929 32k INFO Train Epoch: 256 [26%]
2023-02-10 06:04:51,929 32k INFO [2.5420777797698975, 2.1400043964385986, 7.56562614440918, 11.221778869628906, 0.6662202477455139, 19400, 9.68625723121918e-05]
2023-02-10 06:05:38,131 32k INFO ====> Epoch: 256
2023-02-10 06:07:03,640 32k INFO ====> Epoch: 257
2023-02-10 06:08:22,686 32k INFO Train Epoch: 258 [89%]
2023-02-10 06:08:22,686 32k INFO [2.2824349403381348, 2.342818260192871, 11.228169441223145, 16.061767578125, 0.9010499119758606, 19600, 9.683835818259144e-05]
2023-02-10 06:08:29,233 32k INFO ====> Epoch: 258
2023-02-10 06:09:54,606 32k INFO ====> Epoch: 259
2023-02-10 06:11:19,916 32k INFO ====> Epoch: 260
2023-02-10 06:12:16,024 32k INFO Train Epoch: 261 [53%]
2023-02-10 06:12:16,024 32k INFO [2.2774453163146973, 2.862053394317627, 11.609835624694824, 18.45319366455078, 0.8751690983772278, 19800, 9.680204833738185e-05]
2023-02-10 06:12:45,792 32k INFO ====> Epoch: 261
2023-02-10 06:14:11,129 32k INFO ====> Epoch: 262
2023-02-10 06:15:35,580 32k INFO ====> Epoch: 263
2023-02-10 06:16:08,423 32k INFO Train Epoch: 264 [16%]
2023-02-10 06:16:08,423 32k INFO [2.32112455368042, 2.333401918411255, 9.849132537841797, 13.351881980895996, 0.8110747933387756, 20000, 9.676575210666227e-05]
2023-02-10 06:16:13,685 32k INFO Saving model and optimizer state at iteration 264 to ./logs\32k\G_20000.pth
2023-02-10 06:16:30,849 32k INFO Saving model and optimizer state at iteration 264 to ./logs\32k\D_20000.pth
2023-02-10 06:17:26,961 32k INFO ====> Epoch: 264
2023-02-10 06:18:52,371 32k INFO ====> Epoch: 265
2023-02-10 06:20:05,039 32k INFO Train Epoch: 266 [79%]
2023-02-10 06:20:05,039 32k INFO [2.4292171001434326, 2.405426025390625, 10.425787925720215, 15.707857131958008, 0.6626737117767334, 20200, 9.674156218060047e-05]
2023-02-10 06:20:18,267 32k INFO ====> Epoch: 266
2023-02-10 06:21:43,774 32k INFO ====> Epoch: 267
2023-02-10 06:23:08,283 32k INFO ====> Epoch: 268
2023-02-10 06:23:56,720 32k INFO Train Epoch: 269 [42%]
2023-02-10 06:23:56,720 32k INFO [2.2364232540130615, 2.6233410835266113, 12.21335506439209, 15.925817489624023, 0.2746255695819855, 20400, 9.670528862935451e-05]
2023-02-10 06:24:33,096 32k INFO ====> Epoch: 269
2023-02-10 06:25:57,635 32k INFO ====> Epoch: 270
2023-02-10 06:27:22,159 32k INFO ====> Epoch: 271
2023-02-10 06:27:47,572 32k INFO Train Epoch: 272 [5%]
2023-02-10 06:27:47,572 32k INFO [2.279311180114746, 2.69355845451355, 11.382664680480957, 15.993112564086914, 0.7590271830558777, 20600, 9.666902867899003e-05]
2023-02-10 06:28:46,950 32k INFO ====> Epoch: 272
2023-02-10 06:30:11,421 32k INFO ====> Epoch: 273
2023-02-10 06:31:16,437 32k INFO Train Epoch: 274 [68%]
2023-02-10 06:31:16,437 32k INFO [2.2094767093658447, 2.471757411956787, 11.495461463928223, 15.169349670410156, 0.6064764857292175, 20800, 9.664486293227385e-05]
2023-02-10 06:31:36,272 32k INFO ====> Epoch: 274
2023-02-10 06:33:00,711 32k INFO ====> Epoch: 275
2023-02-10 06:34:25,096 32k INFO ====> Epoch: 276
2023-02-10 06:35:06,908 32k INFO Train Epoch: 277 [32%]
2023-02-10 06:35:06,909 32k INFO [2.3740768432617188, 2.466357707977295, 10.599915504455566, 11.676641464233398, 0.681009829044342, 21000, 9.660862563871342e-05]
2023-02-10 06:35:11,320 32k INFO Saving model and optimizer state at iteration 277 to ./logs\32k\G_21000.pth
2023-02-10 06:35:28,883 32k INFO Saving model and optimizer state at iteration 277 to ./logs\32k\D_21000.pth
2023-02-10 06:36:15,635 32k INFO ====> Epoch: 277
2023-02-10 06:37:40,991 32k INFO ====> Epoch: 278
2023-02-10 06:39:03,277 32k INFO Train Epoch: 279 [95%]
2023-02-10 06:39:03,277 32k INFO [2.7325069904327393, 2.2234275341033936, 7.8317461013793945, 10.93569564819336, 0.5372100472450256, 21200, 9.658447499181352e-05]
2023-02-10 06:39:06,507 32k INFO ====> Epoch: 279
2023-02-10 06:40:31,921 32k INFO ====> Epoch: 280
2023-02-10 06:41:57,223 32k INFO ====> Epoch: 281
2023-02-10 06:42:55,547 32k INFO Train Epoch: 282 [58%]
2023-02-10 06:42:55,548 32k INFO [2.078672409057617, 3.186306953430176, 10.578144073486328, 14.06082534790039, 0.670340895652771, 21400, 9.65482603409002e-05]
2023-02-10 06:43:21,901 32k INFO ====> Epoch: 282
2023-02-10 06:44:46,353 32k INFO ====> Epoch: 283
2023-02-10 06:46:10,896 32k INFO ====> Epoch: 284
2023-02-10 06:46:46,078 32k INFO Train Epoch: 285 [21%]
2023-02-10 06:46:46,078 32k INFO [2.4770002365112305, 2.4508018493652344, 9.283089637756348, 15.895116806030273, 0.6614298224449158, 21600, 9.651205926878348e-05]
2023-02-10 06:47:35,591 32k INFO ====> Epoch: 285
2023-02-10 06:49:00,001 32k INFO ====> Epoch: 286
2023-02-10 06:50:14,886 32k INFO Train Epoch: 287 [84%]
2023-02-10 06:50:14,887 32k INFO [2.2746620178222656, 2.5889053344726562, 10.645721435546875, 13.369743347167969, 0.817758321762085, 21800, 9.64879327619672e-05]
2023-02-10 06:50:24,830 32k INFO ====> Epoch: 287
2023-02-10 06:51:50,242 32k INFO ====> Epoch: 288
2023-02-10 06:53:14,658 32k INFO ====> Epoch: 289
2023-02-10 06:54:06,355 32k INFO Train Epoch: 290 [47%]
2023-02-10 06:54:06,355 32k INFO [2.408446788787842, 2.3364787101745605, 10.12728214263916, 14.59122085571289, 0.7084507942199707, 22000, 9.645175430986486e-05]
2023-02-10 06:54:10,737 32k INFO Saving model and optimizer state at iteration 290 to ./logs\32k\G_22000.pth
2023-02-10 06:54:28,834 32k INFO Saving model and optimizer state at iteration 290 to ./logs\32k\D_22000.pth
2023-02-10 06:55:05,411 32k INFO ====> Epoch: 290
2023-02-10 06:56:30,627 32k INFO ====> Epoch: 291
2023-02-10 06:57:55,820 32k INFO ====> Epoch: 292
2023-02-10 06:58:24,516 32k INFO Train Epoch: 293 [11%]
2023-02-10 06:58:24,516 32k INFO [2.3272194862365723, 2.602001190185547, 9.372489929199219, 11.096156120300293, 0.27660641074180603, 22200, 9.641558942298625e-05]
2023-02-10 06:59:20,776 32k INFO ====> Epoch: 293
2023-02-10 07:00:45,983 32k INFO ====> Epoch: 294
2023-02-10 07:01:55,037 32k INFO Train Epoch: 295 [74%]
2023-02-10 07:01:55,037 32k INFO [2.390826463699341, 2.554483413696289, 8.697030067443848, 14.283463478088379, 0.6869368553161621, 22400, 9.639148703212408e-05]
2023-02-10 07:02:11,478 32k INFO ====> Epoch: 295
2023-02-10 07:03:36,836 32k INFO ====> Epoch: 296
2023-02-10 07:05:02,243 32k INFO ====> Epoch: 297
2023-02-10 07:05:48,212 32k INFO Train Epoch: 298 [37%]
2023-02-10 07:05:48,213 32k INFO [2.413754940032959, 2.9149270057678223, 9.995668411254883, 12.166794776916504, 0.653400182723999, 22600, 9.635534474264972e-05]
2023-02-10 07:06:27,766 32k INFO ====> Epoch: 298
2023-02-10 07:07:52,162 32k INFO ====> Epoch: 299
2023-02-10 07:09:16,689 32k INFO ====> Epoch: 300
2023-02-10 07:09:38,796 32k INFO Train Epoch: 301 [0%]
2023-02-10 07:09:38,796 32k INFO [2.2665956020355225, 2.7774581909179688, 9.704061508178711, 13.352103233337402, 0.712449312210083, 22800, 9.631921600483981e-05]
2023-02-10 07:10:41,520 32k INFO ====> Epoch: 301
2023-02-10 07:12:06,795 32k INFO ====> Epoch: 302
2023-02-10 07:13:08,471 32k INFO Train Epoch: 303 [63%]
2023-02-10 07:13:08,471 32k INFO [2.1530864238739014, 2.413203477859497, 11.726449012756348, 18.033466339111328, 0.6967122554779053, 23000, 9.629513770582634e-05]
2023-02-10 07:13:12,906 32k INFO Saving model and optimizer state at iteration 303 to ./logs\32k\G_23000.pth
2023-02-10 07:13:28,702 32k INFO Saving model and optimizer state at iteration 303 to ./logs\32k\D_23000.pth
2023-02-10 07:13:55,451 32k INFO ====> Epoch: 303
2023-02-10 07:15:20,800 32k INFO ====> Epoch: 304
2023-02-10 07:16:46,057 32k INFO ====> Epoch: 305
2023-02-10 07:17:25,604 32k INFO Train Epoch: 306 [26%]
2023-02-10 07:17:25,605 32k INFO [2.3469924926757812, 2.375382661819458, 9.387177467346191, 12.057092666625977, -0.1277291625738144, 23200, 9.625903154283315e-05]
2023-02-10 07:18:11,964 32k INFO ====> Epoch: 306
2023-02-10 07:19:36,400 32k INFO ====> Epoch: 307
2023-02-10 07:20:54,517 32k INFO Train Epoch: 308 [89%]
2023-02-10 07:20:54,517 32k INFO [2.3641486167907715, 2.28696608543396, 9.959922790527344, 17.36892318725586, 0.7711434364318848, 23400, 9.62349682889948e-05]
2023-02-10 07:21:01,068 32k INFO ====> Epoch: 308
2023-02-10 07:22:25,526 32k INFO ====> Epoch: 309
2023-02-10 07:23:50,156 32k INFO ====> Epoch: 310
2023-02-10 07:24:45,168 32k INFO Train Epoch: 311 [53%]
2023-02-10 07:24:45,169 32k INFO [2.5586600303649902, 2.3868942260742188, 8.270402908325195, 11.41346549987793, 0.6984982490539551, 23600, 9.619888468671259e-05]
2023-02-10 07:25:14,874 32k INFO ====> Epoch: 311
2023-02-10 07:26:39,243 32k INFO ====> Epoch: 312
2023-02-10 07:28:03,612 32k INFO ====> Epoch: 313
2023-02-10 07:28:35,612 32k INFO Train Epoch: 314 [16%]
2023-02-10 07:28:35,613 32k INFO [1.8997191190719604, 2.9339983463287354, 9.256068229675293, 12.056029319763184, 0.7804506421089172, 23800, 9.61628146140899e-05]
2023-02-10 07:29:28,369 32k INFO ====> Epoch: 314
2023-02-10 07:30:52,694 32k INFO ====> Epoch: 315
2023-02-10 07:32:04,287 32k INFO Train Epoch: 316 [79%]
2023-02-10 07:32:04,287 32k INFO [2.4035465717315674, 2.7094507217407227, 9.096111297607422, 14.042303085327148, 0.8556358814239502, 24000, 9.613877541298036e-05]
2023-02-10 07:32:08,663 32k INFO Saving model and optimizer state at iteration 316 to ./logs\32k\G_24000.pth
2023-02-10 07:32:24,726 32k INFO Saving model and optimizer state at iteration 316 to ./logs\32k\D_24000.pth
2023-02-10 07:32:41,400 32k INFO ====> Epoch: 316
2023-02-10 07:34:06,691 32k INFO ====> Epoch: 317
|