File size: 48,695 Bytes
7c2b8c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
2023-02-09 23:54:56,860	32k	INFO	{'train': {'log_interval': 200, 'eval_interval': 1000, 'seed': 1234, 'epochs': 10000, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 6, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 17920, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'use_sr': True, 'max_speclen': 384, 'port': '8001'}, 'data': {'training_files': 'filelists/train.txt', 'validation_files': 'filelists/val.txt', 'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 1280, 'hop_length': 320, 'win_length': 1280, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256, 'ssl_dim': 256, 'n_speakers': 2}, 'spk': {'aeon': 0}, 'model_dir': './logs\\32k'}
2023-02-09 23:55:16,700	32k	INFO	Loaded checkpoint './logs\32k\G_0.pth' (iteration 1)
2023-02-09 23:55:20,130	32k	INFO	Loaded checkpoint './logs\32k\D_0.pth' (iteration 1)
2023-02-09 23:55:47,616	32k	INFO	Train Epoch: 1 [0%]
2023-02-09 23:55:47,617	32k	INFO	[2.4760148525238037, 2.3857452869415283, 12.13435173034668, 38.74782943725586, 12.577811241149902, 0, 0.0001]
2023-02-09 23:55:53,842	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\G_0.pth
2023-02-09 23:56:10,616	32k	INFO	Saving model and optimizer state at iteration 1 to ./logs\32k\D_0.pth
2023-02-09 23:57:17,312	32k	INFO	====> Epoch: 1
2023-02-09 23:58:41,881	32k	INFO	====> Epoch: 2
2023-02-09 23:59:43,565	32k	INFO	Train Epoch: 3 [63%]
2023-02-09 23:59:43,565	32k	INFO	[3.0033481121063232, 2.0346643924713135, 9.557120323181152, 17.325883865356445, 1.1444225311279297, 200, 9.99750015625e-05]
2023-02-10 00:00:06,584	32k	INFO	====> Epoch: 3
2023-02-10 00:01:30,796	32k	INFO	====> Epoch: 4
2023-02-10 00:02:55,178	32k	INFO	====> Epoch: 5
2023-02-10 00:03:33,965	32k	INFO	Train Epoch: 6 [26%]
2023-02-10 00:03:33,965	32k	INFO	[2.6587367057800293, 2.2601664066314697, 11.51845932006836, 20.874536514282227, 1.2725728750228882, 400, 9.993751562304699e-05]
2023-02-10 00:04:19,925	32k	INFO	====> Epoch: 6
2023-02-10 00:05:44,080	32k	INFO	====> Epoch: 7
2023-02-10 00:07:02,071	32k	INFO	Train Epoch: 8 [89%]
2023-02-10 00:07:02,071	32k	INFO	[2.6835384368896484, 2.130737543106079, 6.842741966247559, 16.306140899658203, 1.2471444606781006, 600, 9.991253280566489e-05]
2023-02-10 00:07:08,670	32k	INFO	====> Epoch: 8
2023-02-10 00:08:32,953	32k	INFO	====> Epoch: 9
2023-02-10 00:09:58,155	32k	INFO	====> Epoch: 10
2023-02-10 00:10:53,121	32k	INFO	Train Epoch: 11 [53%]
2023-02-10 00:10:53,121	32k	INFO	[2.508908271789551, 2.226515769958496, 10.416086196899414, 16.404212951660156, 0.9339253306388855, 800, 9.987507028906759e-05]
2023-02-10 00:11:22,660	32k	INFO	====> Epoch: 11
2023-02-10 00:12:46,946	32k	INFO	====> Epoch: 12
2023-02-10 00:14:11,203	32k	INFO	====> Epoch: 13
2023-02-10 00:14:43,324	32k	INFO	Train Epoch: 14 [16%]
2023-02-10 00:14:43,324	32k	INFO	[2.2750678062438965, 2.470716714859009, 11.370126724243164, 16.513538360595703, 1.350426197052002, 1000, 9.983762181915804e-05]
2023-02-10 00:14:47,828	32k	INFO	Saving model and optimizer state at iteration 14 to ./logs\32k\G_1000.pth
2023-02-10 00:15:06,487	32k	INFO	Saving model and optimizer state at iteration 14 to ./logs\32k\D_1000.pth
2023-02-10 00:16:02,684	32k	INFO	====> Epoch: 14
2023-02-10 00:17:27,130	32k	INFO	====> Epoch: 15
2023-02-10 00:18:38,765	32k	INFO	Train Epoch: 16 [79%]
2023-02-10 00:18:38,766	32k	INFO	[2.3250410556793213, 2.5265045166015625, 12.642312049865723, 18.580968856811523, 1.06544029712677, 1200, 9.981266397366609e-05]
2023-02-10 00:18:51,825	32k	INFO	====> Epoch: 16
2023-02-10 00:20:16,238	32k	INFO	====> Epoch: 17
2023-02-10 00:21:40,479	32k	INFO	====> Epoch: 18
2023-02-10 00:22:29,060	32k	INFO	Train Epoch: 19 [42%]
2023-02-10 00:22:29,061	32k	INFO	[2.718174457550049, 2.224525213241577, 9.797636985778809, 13.11706256866455, 0.9313941597938538, 1400, 9.977523890319963e-05]
2023-02-10 00:23:05,152	32k	INFO	====> Epoch: 19
2023-02-10 00:24:29,510	32k	INFO	====> Epoch: 20
2023-02-10 00:25:53,829	32k	INFO	====> Epoch: 21
2023-02-10 00:26:19,301	32k	INFO	Train Epoch: 22 [5%]
2023-02-10 00:26:19,301	32k	INFO	[2.4931561946868896, 2.2891364097595215, 5.325507164001465, 14.156054496765137, 0.7020604610443115, 1600, 9.973782786538036e-05]
2023-02-10 00:27:18,459	32k	INFO	====> Epoch: 22
2023-02-10 00:28:42,594	32k	INFO	====> Epoch: 23
2023-02-10 00:29:47,519	32k	INFO	Train Epoch: 24 [68%]
2023-02-10 00:29:47,519	32k	INFO	[2.5088696479797363, 2.6265249252319336, 7.155318737030029, 11.276984214782715, 0.6565865278244019, 1800, 9.971289496681757e-05]
2023-02-10 00:30:07,171	32k	INFO	====> Epoch: 24
2023-02-10 00:31:31,461	32k	INFO	====> Epoch: 25
2023-02-10 00:32:55,740	32k	INFO	====> Epoch: 26
2023-02-10 00:33:37,761	32k	INFO	Train Epoch: 27 [32%]
2023-02-10 00:33:37,761	32k	INFO	[2.3180291652679443, 2.524212598800659, 11.95003890991211, 18.545923233032227, 0.6431781053543091, 2000, 9.967550730505221e-05]
2023-02-10 00:33:42,280	32k	INFO	Saving model and optimizer state at iteration 27 to ./logs\32k\G_2000.pth
2023-02-10 00:33:59,554	32k	INFO	Saving model and optimizer state at iteration 27 to ./logs\32k\D_2000.pth
2023-02-10 00:34:45,750	32k	INFO	====> Epoch: 27
2023-02-10 00:36:10,183	32k	INFO	====> Epoch: 28
2023-02-10 00:37:32,059	32k	INFO	Train Epoch: 29 [95%]
2023-02-10 00:37:32,059	32k	INFO	[2.533724784851074, 2.297114133834839, 9.978306770324707, 15.051481246948242, 0.5844590067863464, 2200, 9.965058998565574e-05]
2023-02-10 00:37:35,283	32k	INFO	====> Epoch: 29
2023-02-10 00:39:00,123	32k	INFO	====> Epoch: 30
2023-02-10 00:40:24,839	32k	INFO	====> Epoch: 31
2023-02-10 00:41:23,329	32k	INFO	Train Epoch: 32 [58%]
2023-02-10 00:41:23,329	32k	INFO	[2.198890447616577, 2.618730068206787, 10.582822799682617, 15.83022689819336, 0.8572500348091125, 2400, 9.961322568533789e-05]
2023-02-10 00:41:49,677	32k	INFO	====> Epoch: 32
2023-02-10 00:43:14,179	32k	INFO	====> Epoch: 33
2023-02-10 00:44:38,626	32k	INFO	====> Epoch: 34
2023-02-10 00:45:14,097	32k	INFO	Train Epoch: 35 [21%]
2023-02-10 00:45:14,098	32k	INFO	[2.8067591190338135, 2.2793397903442383, 7.9753804206848145, 11.641331672668457, 1.0224435329437256, 2600, 9.957587539488128e-05]
2023-02-10 00:46:03,586	32k	INFO	====> Epoch: 35
2023-02-10 00:47:27,999	32k	INFO	====> Epoch: 36
2023-02-10 00:48:42,929	32k	INFO	Train Epoch: 37 [84%]
2023-02-10 00:48:42,930	32k	INFO	[2.4459195137023926, 2.123002767562866, 10.907198905944824, 16.264312744140625, 0.6869288682937622, 2800, 9.95509829819056e-05]
2023-02-10 00:48:52,746	32k	INFO	====> Epoch: 37
2023-02-10 00:50:17,223	32k	INFO	====> Epoch: 38
2023-02-10 00:51:41,864	32k	INFO	====> Epoch: 39
2023-02-10 00:52:33,774	32k	INFO	Train Epoch: 40 [47%]
2023-02-10 00:52:33,774	32k	INFO	[2.385266065597534, 2.274216651916504, 10.997411727905273, 16.773902893066406, 0.8327657580375671, 3000, 9.951365602954526e-05]
2023-02-10 00:52:38,348	32k	INFO	Saving model and optimizer state at iteration 40 to ./logs\32k\G_3000.pth
2023-02-10 00:52:57,291	32k	INFO	Saving model and optimizer state at iteration 40 to ./logs\32k\D_3000.pth
2023-02-10 00:53:33,533	32k	INFO	====> Epoch: 40
2023-02-10 00:54:58,115	32k	INFO	====> Epoch: 41
2023-02-10 00:56:22,645	32k	INFO	====> Epoch: 42
2023-02-10 00:56:51,489	32k	INFO	Train Epoch: 43 [11%]
2023-02-10 00:56:51,490	32k	INFO	[2.287508249282837, 2.692063331604004, 9.70651626586914, 16.967220306396484, 0.798807680606842, 3200, 9.947634307304244e-05]
2023-02-10 00:57:47,480	32k	INFO	====> Epoch: 43
2023-02-10 00:59:12,119	32k	INFO	====> Epoch: 44
2023-02-10 01:00:20,508	32k	INFO	Train Epoch: 45 [74%]
2023-02-10 01:00:20,509	32k	INFO	[2.249314785003662, 2.683621883392334, 9.802401542663574, 17.789817810058594, 0.4752405881881714, 3400, 9.945147554159202e-05]
2023-02-10 01:00:36,926	32k	INFO	====> Epoch: 45
2023-02-10 01:02:01,330	32k	INFO	====> Epoch: 46
2023-02-10 01:03:25,782	32k	INFO	====> Epoch: 47
2023-02-10 01:04:11,005	32k	INFO	Train Epoch: 48 [37%]
2023-02-10 01:04:11,006	32k	INFO	[2.2856054306030273, 2.5306761264801025, 9.405101776123047, 14.461358070373535, 0.6637941002845764, 3600, 9.941418589985758e-05]
2023-02-10 01:04:50,618	32k	INFO	====> Epoch: 48
2023-02-10 01:06:16,153	32k	INFO	====> Epoch: 49
2023-02-10 01:07:40,668	32k	INFO	====> Epoch: 50
2023-02-10 01:08:02,827	32k	INFO	Train Epoch: 51 [0%]
2023-02-10 01:08:02,827	32k	INFO	[2.449678659439087, 2.3578238487243652, 10.553171157836914, 16.373308181762695, 1.1569361686706543, 3800, 9.937691023999092e-05]
2023-02-10 01:09:05,476	32k	INFO	====> Epoch: 51
2023-02-10 01:10:29,887	32k	INFO	====> Epoch: 52
2023-02-10 01:11:31,703	32k	INFO	Train Epoch: 53 [63%]
2023-02-10 01:11:31,703	32k	INFO	[2.4566311836242676, 2.3078484535217285, 9.267095565795898, 14.384586334228516, 0.9955094456672668, 4000, 9.935206756519513e-05]
2023-02-10 01:11:36,151	32k	INFO	Saving model and optimizer state at iteration 53 to ./logs\32k\G_4000.pth
2023-02-10 01:11:53,677	32k	INFO	Saving model and optimizer state at iteration 53 to ./logs\32k\D_4000.pth
2023-02-10 01:12:20,483	32k	INFO	====> Epoch: 53
2023-02-10 01:13:45,174	32k	INFO	====> Epoch: 54
2023-02-10 01:15:09,860	32k	INFO	====> Epoch: 55
2023-02-10 01:15:48,458	32k	INFO	Train Epoch: 56 [26%]
2023-02-10 01:15:48,458	32k	INFO	[2.2449021339416504, 2.2987923622131348, 10.592050552368164, 14.990753173828125, 0.2585275173187256, 4200, 9.931481519679228e-05]
2023-02-10 01:16:34,690	32k	INFO	====> Epoch: 56
2023-02-10 01:17:59,199	32k	INFO	====> Epoch: 57
2023-02-10 01:19:17,517	32k	INFO	Train Epoch: 58 [89%]
2023-02-10 01:19:17,518	32k	INFO	[2.7950096130371094, 2.033355236053467, 6.349589824676514, 13.051651000976562, 0.41371816396713257, 4400, 9.928998804478705e-05]
2023-02-10 01:19:24,069	32k	INFO	====> Epoch: 58
2023-02-10 01:20:48,652	32k	INFO	====> Epoch: 59
2023-02-10 01:22:13,434	32k	INFO	====> Epoch: 60
2023-02-10 01:23:08,515	32k	INFO	Train Epoch: 61 [53%]
2023-02-10 01:23:08,516	32k	INFO	[2.509904146194458, 2.3118839263916016, 10.964993476867676, 18.20663833618164, 0.8472650647163391, 4600, 9.92527589532945e-05]
2023-02-10 01:23:38,264	32k	INFO	====> Epoch: 61
2023-02-10 01:25:02,945	32k	INFO	====> Epoch: 62
2023-02-10 01:26:27,685	32k	INFO	====> Epoch: 63
2023-02-10 01:26:59,803	32k	INFO	Train Epoch: 64 [16%]
2023-02-10 01:26:59,803	32k	INFO	[2.302783489227295, 2.5982413291931152, 10.80894660949707, 14.60811996459961, 1.0399219989776611, 4800, 9.921554382096622e-05]
2023-02-10 01:27:52,584	32k	INFO	====> Epoch: 64
2023-02-10 01:29:17,080	32k	INFO	====> Epoch: 65
2023-02-10 01:30:28,770	32k	INFO	Train Epoch: 66 [79%]
2023-02-10 01:30:28,770	32k	INFO	[2.7284963130950928, 2.3790788650512695, 9.036128044128418, 13.677116394042969, 0.6173059940338135, 5000, 9.919074148525384e-05]
2023-02-10 01:30:33,203	32k	INFO	Saving model and optimizer state at iteration 66 to ./logs\32k\G_5000.pth
2023-02-10 01:30:50,085	32k	INFO	Saving model and optimizer state at iteration 66 to ./logs\32k\D_5000.pth
2023-02-10 01:31:06,739	32k	INFO	====> Epoch: 66
2023-02-10 01:32:31,353	32k	INFO	====> Epoch: 67
2023-02-10 01:33:57,529	32k	INFO	====> Epoch: 68
2023-02-10 01:34:46,261	32k	INFO	Train Epoch: 69 [42%]
2023-02-10 01:34:46,262	32k	INFO	[2.5467963218688965, 2.0986404418945312, 10.101814270019531, 14.508784294128418, 1.3656277656555176, 5200, 9.915354960656915e-05]
2023-02-10 01:35:22,514	32k	INFO	====> Epoch: 69
2023-02-10 01:36:47,135	32k	INFO	====> Epoch: 70
2023-02-10 01:38:11,576	32k	INFO	====> Epoch: 71
2023-02-10 01:38:37,123	32k	INFO	Train Epoch: 72 [5%]
2023-02-10 01:38:37,123	32k	INFO	[1.857373833656311, 3.1599011421203613, 8.379103660583496, 9.244300842285156, 1.2350279092788696, 5400, 9.911637167309565e-05]
2023-02-10 01:39:36,388	32k	INFO	====> Epoch: 72
2023-02-10 01:41:00,864	32k	INFO	====> Epoch: 73
2023-02-10 01:42:05,899	32k	INFO	Train Epoch: 74 [68%]
2023-02-10 01:42:05,900	32k	INFO	[2.3246712684631348, 2.638263463973999, 7.793229579925537, 13.017571449279785, 0.9624058604240417, 5600, 9.909159412887068e-05]
2023-02-10 01:42:25,722	32k	INFO	====> Epoch: 74
2023-02-10 01:43:50,155	32k	INFO	====> Epoch: 75
2023-02-10 01:45:14,883	32k	INFO	====> Epoch: 76
2023-02-10 01:45:56,818	32k	INFO	Train Epoch: 77 [32%]
2023-02-10 01:45:56,818	32k	INFO	[2.2799293994903564, 2.503884792327881, 12.849569320678711, 18.74350929260254, 0.9742995500564575, 5800, 9.905443942579728e-05]
2023-02-10 01:46:39,621	32k	INFO	====> Epoch: 77
2023-02-10 01:48:04,267	32k	INFO	====> Epoch: 78
2023-02-10 01:49:25,876	32k	INFO	Train Epoch: 79 [95%]
2023-02-10 01:49:25,876	32k	INFO	[2.3028907775878906, 2.451934337615967, 11.012730598449707, 17.174062728881836, 0.7448775768280029, 6000, 9.902967736366644e-05]
2023-02-10 01:49:30,404	32k	INFO	Saving model and optimizer state at iteration 79 to ./logs\32k\G_6000.pth
2023-02-10 01:49:47,910	32k	INFO	Saving model and optimizer state at iteration 79 to ./logs\32k\D_6000.pth
2023-02-10 01:49:54,757	32k	INFO	====> Epoch: 79
2023-02-10 01:51:19,458	32k	INFO	====> Epoch: 80
2023-02-10 01:52:44,119	32k	INFO	====> Epoch: 81
2023-02-10 01:53:42,673	32k	INFO	Train Epoch: 82 [58%]
2023-02-10 01:53:42,674	32k	INFO	[2.279362201690674, 2.260122776031494, 8.51861572265625, 12.269641876220703, 0.7776111960411072, 6200, 9.899254587647776e-05]
2023-02-10 01:54:09,077	32k	INFO	====> Epoch: 82
2023-02-10 01:55:33,754	32k	INFO	====> Epoch: 83
2023-02-10 01:56:58,300	32k	INFO	====> Epoch: 84
2023-02-10 01:57:33,593	32k	INFO	Train Epoch: 85 [21%]
2023-02-10 01:57:33,594	32k	INFO	[2.6448638439178467, 2.2926855087280273, 11.688180923461914, 18.19353675842285, 0.9365038275718689, 6400, 9.895542831185631e-05]
2023-02-10 01:58:23,117	32k	INFO	====> Epoch: 85
2023-02-10 01:59:47,507	32k	INFO	====> Epoch: 86
2023-02-10 02:01:02,283	32k	INFO	Train Epoch: 87 [84%]
2023-02-10 02:01:02,283	32k	INFO	[2.427564859390259, 2.242896556854248, 11.131178855895996, 16.051637649536133, 0.914648711681366, 6600, 9.89306910009569e-05]
2023-02-10 02:01:12,207	32k	INFO	====> Epoch: 87
2023-02-10 02:02:36,685	32k	INFO	====> Epoch: 88
2023-02-10 02:04:01,181	32k	INFO	====> Epoch: 89
2023-02-10 02:04:52,920	32k	INFO	Train Epoch: 90 [47%]
2023-02-10 02:04:52,921	32k	INFO	[2.4379117488861084, 2.36348557472229, 8.932344436645508, 16.195209503173828, 0.8471890091896057, 6800, 9.889359662901445e-05]
2023-02-10 02:05:25,823	32k	INFO	====> Epoch: 90
2023-02-10 02:06:50,173	32k	INFO	====> Epoch: 91
2023-02-10 02:08:14,749	32k	INFO	====> Epoch: 92
2023-02-10 02:08:43,328	32k	INFO	Train Epoch: 93 [11%]
2023-02-10 02:08:43,329	32k	INFO	[2.467284917831421, 2.144986391067505, 11.449904441833496, 16.176807403564453, 0.4319636821746826, 7000, 9.885651616572276e-05]
2023-02-10 02:08:47,768	32k	INFO	Saving model and optimizer state at iteration 93 to ./logs\32k\G_7000.pth
2023-02-10 02:09:04,812	32k	INFO	Saving model and optimizer state at iteration 93 to ./logs\32k\D_7000.pth
2023-02-10 02:10:04,543	32k	INFO	====> Epoch: 93
2023-02-10 02:11:29,241	32k	INFO	====> Epoch: 94
2023-02-10 02:12:37,720	32k	INFO	Train Epoch: 95 [74%]
2023-02-10 02:12:37,720	32k	INFO	[2.2731475830078125, 2.425633430480957, 10.031761169433594, 14.7035493850708, 0.8044810891151428, 7200, 9.883180358131438e-05]
2023-02-10 02:12:54,162	32k	INFO	====> Epoch: 95
2023-02-10 02:14:18,638	32k	INFO	====> Epoch: 96
2023-02-10 02:15:42,921	32k	INFO	====> Epoch: 97
2023-02-10 02:16:28,193	32k	INFO	Train Epoch: 98 [37%]
2023-02-10 02:16:28,194	32k	INFO	[2.3223936557769775, 2.573565721511841, 10.411147117614746, 19.68339729309082, 0.5216219425201416, 7400, 9.879474628751914e-05]
2023-02-10 02:17:07,685	32k	INFO	====> Epoch: 98
2023-02-10 02:18:32,253	32k	INFO	====> Epoch: 99
2023-02-10 02:19:56,642	32k	INFO	====> Epoch: 100
2023-02-10 02:20:18,741	32k	INFO	Train Epoch: 101 [0%]
2023-02-10 02:20:18,742	32k	INFO	[2.397695541381836, 2.1934003829956055, 8.183572769165039, 12.770599365234375, 1.0327764749526978, 7600, 9.875770288847208e-05]
2023-02-10 02:21:21,459	32k	INFO	====> Epoch: 101
2023-02-10 02:22:46,182	32k	INFO	====> Epoch: 102
2023-02-10 02:23:47,848	32k	INFO	Train Epoch: 103 [63%]
2023-02-10 02:23:47,848	32k	INFO	[2.461080312728882, 2.3870487213134766, 6.649186134338379, 10.037254333496094, 0.8956831693649292, 7800, 9.873301500583906e-05]
2023-02-10 02:24:10,873	32k	INFO	====> Epoch: 103
2023-02-10 02:25:35,259	32k	INFO	====> Epoch: 104
2023-02-10 02:26:59,649	32k	INFO	====> Epoch: 105
2023-02-10 02:27:38,326	32k	INFO	Train Epoch: 106 [26%]
2023-02-10 02:27:38,327	32k	INFO	[1.846121072769165, 3.3351776599884033, 8.606220245361328, 9.130136489868164, 0.8224015831947327, 8000, 9.86959947531291e-05]
2023-02-10 02:27:42,852	32k	INFO	Saving model and optimizer state at iteration 106 to ./logs\32k\G_8000.pth
2023-02-10 02:28:02,191	32k	INFO	Saving model and optimizer state at iteration 106 to ./logs\32k\D_8000.pth
2023-02-10 02:28:52,049	32k	INFO	====> Epoch: 106
2023-02-10 02:30:17,599	32k	INFO	====> Epoch: 107
2023-02-10 02:31:35,925	32k	INFO	Train Epoch: 108 [89%]
2023-02-10 02:31:35,925	32k	INFO	[2.4512813091278076, 2.255336046218872, 7.023709297180176, 11.943727493286133, 0.9954293370246887, 8200, 9.867132229656573e-05]
2023-02-10 02:31:42,471	32k	INFO	====> Epoch: 108
2023-02-10 02:33:07,180	32k	INFO	====> Epoch: 109
2023-02-10 02:34:31,690	32k	INFO	====> Epoch: 110
2023-02-10 02:35:26,947	32k	INFO	Train Epoch: 111 [53%]
2023-02-10 02:35:26,947	32k	INFO	[2.391657590866089, 2.3984644412994385, 13.551353454589844, 14.703734397888184, 0.9091495871543884, 8400, 9.863432517573002e-05]
2023-02-10 02:35:56,571	32k	INFO	====> Epoch: 111
2023-02-10 02:37:21,163	32k	INFO	====> Epoch: 112
2023-02-10 02:38:45,688	32k	INFO	====> Epoch: 113
2023-02-10 02:39:17,654	32k	INFO	Train Epoch: 114 [16%]
2023-02-10 02:39:17,655	32k	INFO	[2.39654278755188, 2.245805263519287, 10.06233024597168, 14.09300708770752, 0.6480247974395752, 8600, 9.859734192708044e-05]
2023-02-10 02:40:10,405	32k	INFO	====> Epoch: 114
2023-02-10 02:41:34,622	32k	INFO	====> Epoch: 115
2023-02-10 02:42:46,274	32k	INFO	Train Epoch: 116 [79%]
2023-02-10 02:42:46,274	32k	INFO	[2.5749049186706543, 2.414797306060791, 9.960501670837402, 16.4396915435791, 0.789290189743042, 8800, 9.857269413218213e-05]
2023-02-10 02:42:59,471	32k	INFO	====> Epoch: 116
2023-02-10 02:44:24,046	32k	INFO	====> Epoch: 117
2023-02-10 02:45:48,517	32k	INFO	====> Epoch: 118
2023-02-10 02:46:37,109	32k	INFO	Train Epoch: 119 [42%]
2023-02-10 02:46:37,109	32k	INFO	[2.4546942710876465, 2.1338768005371094, 12.899450302124023, 15.397659301757812, 0.8034476637840271, 9000, 9.853573399228505e-05]
2023-02-10 02:46:41,546	32k	INFO	Saving model and optimizer state at iteration 119 to ./logs\32k\G_9000.pth
2023-02-10 02:47:01,129	32k	INFO	Saving model and optimizer state at iteration 119 to ./logs\32k\D_9000.pth
2023-02-10 02:47:40,886	32k	INFO	====> Epoch: 119
2023-02-10 02:49:05,371	32k	INFO	====> Epoch: 120
2023-02-10 02:50:29,859	32k	INFO	====> Epoch: 121
2023-02-10 02:50:55,463	32k	INFO	Train Epoch: 122 [5%]
2023-02-10 02:50:55,463	32k	INFO	[2.207282543182373, 2.6213908195495605, 7.647693634033203, 14.46692180633545, 0.9529262185096741, 9200, 9.8498787710708e-05]
2023-02-10 02:51:55,210	32k	INFO	====> Epoch: 122
2023-02-10 02:53:19,953	32k	INFO	====> Epoch: 123
2023-02-10 02:54:25,092	32k	INFO	Train Epoch: 124 [68%]
2023-02-10 02:54:25,093	32k	INFO	[2.332580089569092, 2.3436594009399414, 6.139850616455078, 10.373167037963867, 0.9625253677368164, 9400, 9.847416455282387e-05]
2023-02-10 02:54:44,808	32k	INFO	====> Epoch: 124
2023-02-10 02:56:09,403	32k	INFO	====> Epoch: 125
2023-02-10 02:57:35,700	32k	INFO	====> Epoch: 126
2023-02-10 02:58:17,551	32k	INFO	Train Epoch: 127 [32%]
2023-02-10 02:58:17,552	32k	INFO	[2.467034339904785, 2.2089598178863525, 7.952523708343506, 16.058887481689453, 0.8524291515350342, 9600, 9.84372413569007e-05]
2023-02-10 02:59:00,413	32k	INFO	====> Epoch: 127
2023-02-10 03:00:24,954	32k	INFO	====> Epoch: 128
2023-02-10 03:01:46,396	32k	INFO	Train Epoch: 129 [95%]
2023-02-10 03:01:46,397	32k	INFO	[2.367544174194336, 2.7189576625823975, 6.78631591796875, 12.748686790466309, 0.4685216546058655, 9800, 9.841263358464336e-05]
2023-02-10 03:01:49,616	32k	INFO	====> Epoch: 129
2023-02-10 03:03:14,271	32k	INFO	====> Epoch: 130
2023-02-10 03:04:38,789	32k	INFO	====> Epoch: 131
2023-02-10 03:05:37,230	32k	INFO	Train Epoch: 132 [58%]
2023-02-10 03:05:37,231	32k	INFO	[2.4509665966033936, 2.7042665481567383, 10.243302345275879, 13.67796802520752, 0.6009257435798645, 10000, 9.837573345994909e-05]
2023-02-10 03:05:41,749	32k	INFO	Saving model and optimizer state at iteration 132 to ./logs\32k\G_10000.pth
2023-02-10 03:05:58,430	32k	INFO	Saving model and optimizer state at iteration 132 to ./logs\32k\D_10000.pth
2023-02-10 03:06:28,668	32k	INFO	====> Epoch: 132
2023-02-10 03:07:54,369	32k	INFO	====> Epoch: 133
2023-02-10 03:09:19,084	32k	INFO	====> Epoch: 134
2023-02-10 03:09:54,319	32k	INFO	Train Epoch: 135 [21%]
2023-02-10 03:09:54,319	32k	INFO	[2.5057411193847656, 2.4407787322998047, 9.817587852478027, 13.728426933288574, 0.6413305997848511, 10200, 9.833884717107196e-05]
2023-02-10 03:10:43,813	32k	INFO	====> Epoch: 135
2023-02-10 03:12:08,539	32k	INFO	====> Epoch: 136
2023-02-10 03:13:23,629	32k	INFO	Train Epoch: 137 [84%]
2023-02-10 03:13:23,629	32k	INFO	[2.5296790599823, 2.208813190460205, 6.762031078338623, 10.408514976501465, 0.754698634147644, 10400, 9.831426399582366e-05]
2023-02-10 03:13:33,495	32k	INFO	====> Epoch: 137
2023-02-10 03:14:58,219	32k	INFO	====> Epoch: 138
2023-02-10 03:16:22,869	32k	INFO	====> Epoch: 139
2023-02-10 03:17:14,809	32k	INFO	Train Epoch: 140 [47%]
2023-02-10 03:17:14,809	32k	INFO	[2.5353844165802, 2.2106950283050537, 10.004817008972168, 13.992541313171387, 0.6150087714195251, 10600, 9.827740075511432e-05]
2023-02-10 03:17:47,789	32k	INFO	====> Epoch: 140
2023-02-10 03:19:12,269	32k	INFO	====> Epoch: 141
2023-02-10 03:20:36,797	32k	INFO	====> Epoch: 142
2023-02-10 03:21:05,474	32k	INFO	Train Epoch: 143 [11%]
2023-02-10 03:21:05,475	32k	INFO	[2.335813522338867, 2.381714344024658, 9.432477951049805, 14.522370338439941, 0.697417140007019, 10800, 9.824055133639235e-05]
2023-02-10 03:22:01,624	32k	INFO	====> Epoch: 143
2023-02-10 03:23:26,232	32k	INFO	====> Epoch: 144
2023-02-10 03:24:34,537	32k	INFO	Train Epoch: 145 [74%]
2023-02-10 03:24:34,538	32k	INFO	[1.924493670463562, 3.025908946990967, 10.635231018066406, 12.46295166015625, 0.3505359888076782, 11000, 9.821599273356685e-05]
2023-02-10 03:24:39,057	32k	INFO	Saving model and optimizer state at iteration 145 to ./logs\32k\G_11000.pth
2023-02-10 03:24:57,871	32k	INFO	Saving model and optimizer state at iteration 145 to ./logs\32k\D_11000.pth
2023-02-10 03:25:18,230	32k	INFO	====> Epoch: 145
2023-02-10 03:26:42,920	32k	INFO	====> Epoch: 146
2023-02-10 03:28:07,571	32k	INFO	====> Epoch: 147
2023-02-10 03:28:52,871	32k	INFO	Train Epoch: 148 [37%]
2023-02-10 03:28:52,872	32k	INFO	[2.568720579147339, 2.2338619232177734, 6.399820327758789, 12.950323104858398, 0.9168809056282043, 11200, 9.817916633997459e-05]
2023-02-10 03:29:32,512	32k	INFO	====> Epoch: 148
2023-02-10 03:30:57,311	32k	INFO	====> Epoch: 149
2023-02-10 03:32:22,084	32k	INFO	====> Epoch: 150
2023-02-10 03:32:44,293	32k	INFO	Train Epoch: 151 [0%]
2023-02-10 03:32:44,293	32k	INFO	[2.3033745288848877, 2.415085792541504, 10.928938865661621, 16.1735897064209, 0.3847680985927582, 11400, 9.814235375455375e-05]
2023-02-10 03:33:47,215	32k	INFO	====> Epoch: 151
2023-02-10 03:35:11,867	32k	INFO	====> Epoch: 152
2023-02-10 03:36:13,752	32k	INFO	Train Epoch: 153 [63%]
2023-02-10 03:36:13,753	32k	INFO	[2.173736333847046, 2.650914192199707, 12.767165184020996, 18.795696258544922, 0.4320840835571289, 11600, 9.811781969958938e-05]
2023-02-10 03:36:36,873	32k	INFO	====> Epoch: 153
2023-02-10 03:38:01,486	32k	INFO	====> Epoch: 154
2023-02-10 03:39:26,006	32k	INFO	====> Epoch: 155
2023-02-10 03:40:04,581	32k	INFO	Train Epoch: 156 [26%]
2023-02-10 03:40:04,582	32k	INFO	[2.574475049972534, 2.363281488418579, 8.882105827331543, 10.567209243774414, 0.11711447685956955, 11800, 9.808103011628319e-05]
2023-02-10 03:40:50,861	32k	INFO	====> Epoch: 156
2023-02-10 03:42:15,437	32k	INFO	====> Epoch: 157
2023-02-10 03:43:33,696	32k	INFO	Train Epoch: 158 [89%]
2023-02-10 03:43:33,696	32k	INFO	[2.343777894973755, 2.4922895431518555, 10.256402969360352, 16.83711051940918, 0.874286413192749, 12000, 9.80565113912702e-05]
2023-02-10 03:43:38,306	32k	INFO	Saving model and optimizer state at iteration 158 to ./logs\32k\G_12000.pth
2023-02-10 03:43:55,136	32k	INFO	Saving model and optimizer state at iteration 158 to ./logs\32k\D_12000.pth
2023-02-10 03:44:05,409	32k	INFO	====> Epoch: 158
2023-02-10 03:45:30,201	32k	INFO	====> Epoch: 159
2023-02-10 03:46:54,691	32k	INFO	====> Epoch: 160
2023-02-10 03:47:49,976	32k	INFO	Train Epoch: 161 [53%]
2023-02-10 03:47:49,976	32k	INFO	[2.596492290496826, 2.6639647483825684, 7.916460037231445, 15.857110977172852, 0.8963372707366943, 12200, 9.801974479570593e-05]
2023-02-10 03:48:19,643	32k	INFO	====> Epoch: 161
2023-02-10 03:49:44,342	32k	INFO	====> Epoch: 162
2023-02-10 03:51:09,047	32k	INFO	====> Epoch: 163
2023-02-10 03:51:41,212	32k	INFO	Train Epoch: 164 [16%]
2023-02-10 03:51:41,212	32k	INFO	[2.252506971359253, 2.4695920944213867, 11.395182609558105, 16.45693016052246, 0.94123774766922, 12400, 9.798299198589162e-05]
2023-02-10 03:52:34,132	32k	INFO	====> Epoch: 164
2023-02-10 03:53:59,347	32k	INFO	====> Epoch: 165
2023-02-10 03:55:11,032	32k	INFO	Train Epoch: 166 [79%]
2023-02-10 03:55:11,032	32k	INFO	[2.5481297969818115, 2.5002939701080322, 10.718299865722656, 17.71586036682129, 0.3888394236564636, 12600, 9.795849776887939e-05]
2023-02-10 03:55:24,184	32k	INFO	====> Epoch: 166
2023-02-10 03:56:48,762	32k	INFO	====> Epoch: 167
2023-02-10 03:58:13,310	32k	INFO	====> Epoch: 168
2023-02-10 03:59:01,779	32k	INFO	Train Epoch: 169 [42%]
2023-02-10 03:59:01,779	32k	INFO	[2.531505584716797, 1.924519658088684, 13.503902435302734, 16.02785301208496, 0.9448908567428589, 12800, 9.792176792382932e-05]
2023-02-10 03:59:38,066	32k	INFO	====> Epoch: 169
2023-02-10 04:01:02,587	32k	INFO	====> Epoch: 170
2023-02-10 04:02:27,100	32k	INFO	====> Epoch: 171
2023-02-10 04:02:52,429	32k	INFO	Train Epoch: 172 [5%]
2023-02-10 04:02:52,430	32k	INFO	[2.5668065547943115, 2.419389247894287, 8.094529151916504, 14.7818603515625, 0.7867487072944641, 13000, 9.78850518507495e-05]
2023-02-10 04:02:56,916	32k	INFO	Saving model and optimizer state at iteration 172 to ./logs\32k\G_13000.pth
2023-02-10 04:03:14,363	32k	INFO	Saving model and optimizer state at iteration 172 to ./logs\32k\D_13000.pth
2023-02-10 04:04:17,632	32k	INFO	====> Epoch: 172
2023-02-10 04:05:42,306	32k	INFO	====> Epoch: 173
2023-02-10 04:06:47,480	32k	INFO	Train Epoch: 174 [68%]
2023-02-10 04:06:47,480	32k	INFO	[2.1723153591156006, 2.5889978408813477, 10.076593399047852, 12.853192329406738, 0.3051690459251404, 13200, 9.786058211724074e-05]
2023-02-10 04:07:07,239	32k	INFO	====> Epoch: 174
2023-02-10 04:08:31,852	32k	INFO	====> Epoch: 175
2023-02-10 04:09:56,580	32k	INFO	====> Epoch: 176
2023-02-10 04:10:38,557	32k	INFO	Train Epoch: 177 [32%]
2023-02-10 04:10:38,558	32k	INFO	[2.395698070526123, 2.4369287490844727, 11.675952911376953, 15.961197853088379, 0.7354399561882019, 13400, 9.782388898597041e-05]
2023-02-10 04:11:21,538	32k	INFO	====> Epoch: 177
2023-02-10 04:12:46,203	32k	INFO	====> Epoch: 178
2023-02-10 04:14:07,776	32k	INFO	Train Epoch: 179 [95%]
2023-02-10 04:14:07,777	32k	INFO	[2.7345943450927734, 1.9628326892852783, 6.206479072570801, 7.970531940460205, 0.8745248913764954, 13600, 9.779943454222217e-05]
2023-02-10 04:14:10,989	32k	INFO	====> Epoch: 179
2023-02-10 04:15:35,842	32k	INFO	====> Epoch: 180
2023-02-10 04:17:00,411	32k	INFO	====> Epoch: 181
2023-02-10 04:17:58,909	32k	INFO	Train Epoch: 182 [58%]
2023-02-10 04:17:58,909	32k	INFO	[2.2180511951446533, 2.461686372756958, 7.78315544128418, 12.147871971130371, 0.7892422080039978, 13800, 9.776276433842631e-05]
2023-02-10 04:18:25,267	32k	INFO	====> Epoch: 182
2023-02-10 04:19:49,727	32k	INFO	====> Epoch: 183
2023-02-10 04:21:14,382	32k	INFO	====> Epoch: 184
2023-02-10 04:21:49,851	32k	INFO	Train Epoch: 185 [21%]
2023-02-10 04:21:49,851	32k	INFO	[2.5905978679656982, 2.213409185409546, 9.200039863586426, 12.909902572631836, 0.1616513580083847, 14000, 9.772610788423802e-05]
2023-02-10 04:21:54,470	32k	INFO	Saving model and optimizer state at iteration 185 to ./logs\32k\G_14000.pth
2023-02-10 04:22:11,052	32k	INFO	Saving model and optimizer state at iteration 185 to ./logs\32k\D_14000.pth
2023-02-10 04:23:03,696	32k	INFO	====> Epoch: 185
2023-02-10 04:24:28,374	32k	INFO	====> Epoch: 186
2023-02-10 04:25:43,503	32k	INFO	Train Epoch: 187 [84%]
2023-02-10 04:25:43,504	32k	INFO	[2.115373134613037, 2.6405253410339355, 13.0419340133667, 17.158859252929688, 0.6063501238822937, 14200, 9.77016778842374e-05]
2023-02-10 04:25:53,337	32k	INFO	====> Epoch: 187
2023-02-10 04:27:18,024	32k	INFO	====> Epoch: 188
2023-02-10 04:28:42,529	32k	INFO	====> Epoch: 189
2023-02-10 04:29:34,368	32k	INFO	Train Epoch: 190 [47%]
2023-02-10 04:29:34,368	32k	INFO	[2.0680086612701416, 3.0300402641296387, 8.614965438842773, 12.649006843566895, 0.691765546798706, 14400, 9.766504433460612e-05]
2023-02-10 04:30:07,450	32k	INFO	====> Epoch: 190
2023-02-10 04:31:32,088	32k	INFO	====> Epoch: 191
2023-02-10 04:32:56,573	32k	INFO	====> Epoch: 192
2023-02-10 04:33:25,364	32k	INFO	Train Epoch: 193 [11%]
2023-02-10 04:33:25,365	32k	INFO	[2.3075990676879883, 2.3698666095733643, 14.287137985229492, 16.29629135131836, 0.5351936221122742, 14600, 9.762842452083883e-05]
2023-02-10 04:34:21,439	32k	INFO	====> Epoch: 193
2023-02-10 04:35:46,041	32k	INFO	====> Epoch: 194
2023-02-10 04:36:54,340	32k	INFO	Train Epoch: 195 [74%]
2023-02-10 04:36:54,341	32k	INFO	[2.3796615600585938, 2.2257769107818604, 9.005014419555664, 12.171199798583984, 0.7831335067749023, 14800, 9.760401894015275e-05]
2023-02-10 04:37:10,784	32k	INFO	====> Epoch: 195
2023-02-10 04:38:35,380	32k	INFO	====> Epoch: 196
2023-02-10 04:39:59,882	32k	INFO	====> Epoch: 197
2023-02-10 04:40:45,368	32k	INFO	Train Epoch: 198 [37%]
2023-02-10 04:40:45,368	32k	INFO	[2.5116686820983887, 2.4769821166992188, 9.495701789855957, 15.055347442626953, 0.6151214241981506, 15000, 9.756742200804793e-05]
2023-02-10 04:40:49,881	32k	INFO	Saving model and optimizer state at iteration 198 to ./logs\32k\G_15000.pth
2023-02-10 04:41:08,000	32k	INFO	Saving model and optimizer state at iteration 198 to ./logs\32k\D_15000.pth
2023-02-10 04:41:51,223	32k	INFO	====> Epoch: 198
2023-02-10 04:43:15,797	32k	INFO	====> Epoch: 199
2023-02-10 04:44:40,469	32k	INFO	====> Epoch: 200
2023-02-10 04:45:02,531	32k	INFO	Train Epoch: 201 [0%]
2023-02-10 04:45:02,531	32k	INFO	[2.66977858543396, 2.327565908432007, 8.785197257995605, 12.054095268249512, 0.33490169048309326, 15200, 9.753083879807726e-05]
2023-02-10 04:46:05,243	32k	INFO	====> Epoch: 201
2023-02-10 04:47:29,831	32k	INFO	====> Epoch: 202
2023-02-10 04:48:31,669	32k	INFO	Train Epoch: 203 [63%]
2023-02-10 04:48:31,669	32k	INFO	[2.4113712310791016, 2.208491325378418, 7.582664966583252, 10.762511253356934, 0.24080340564250946, 15400, 9.750645761229709e-05]
2023-02-10 04:48:54,843	32k	INFO	====> Epoch: 203
2023-02-10 04:50:20,441	32k	INFO	====> Epoch: 204
2023-02-10 04:51:44,905	32k	INFO	====> Epoch: 205
2023-02-10 04:52:23,595	32k	INFO	Train Epoch: 206 [26%]
2023-02-10 04:52:23,596	32k	INFO	[2.406938076019287, 2.329049587249756, 13.670656204223633, 15.57223129272461, 0.5972563028335571, 15600, 9.746989726111722e-05]
2023-02-10 04:53:09,786	32k	INFO	====> Epoch: 206
2023-02-10 04:54:34,352	32k	INFO	====> Epoch: 207
2023-02-10 04:55:52,644	32k	INFO	Train Epoch: 208 [89%]
2023-02-10 04:55:52,645	32k	INFO	[2.4009199142456055, 2.4792189598083496, 8.647868156433105, 13.368301391601562, 0.6690515875816345, 15800, 9.744553130976908e-05]
2023-02-10 04:55:59,209	32k	INFO	====> Epoch: 208
2023-02-10 04:57:23,732	32k	INFO	====> Epoch: 209
2023-02-10 04:58:48,239	32k	INFO	====> Epoch: 210
2023-02-10 04:59:43,567	32k	INFO	Train Epoch: 211 [53%]
2023-02-10 04:59:43,567	32k	INFO	[2.491450309753418, 2.5477209091186523, 7.471154689788818, 13.8217191696167, 0.5033202767372131, 16000, 9.740899380309685e-05]
2023-02-10 04:59:47,998	32k	INFO	Saving model and optimizer state at iteration 211 to ./logs\32k\G_16000.pth
2023-02-10 05:00:05,780	32k	INFO	Saving model and optimizer state at iteration 211 to ./logs\32k\D_16000.pth
2023-02-10 05:00:39,185	32k	INFO	====> Epoch: 211
2023-02-10 05:02:04,575	32k	INFO	====> Epoch: 212
2023-02-10 05:03:29,926	32k	INFO	====> Epoch: 213
2023-02-10 05:04:02,744	32k	INFO	Train Epoch: 214 [16%]
2023-02-10 05:04:02,744	32k	INFO	[2.5403432846069336, 2.3642735481262207, 10.938908576965332, 14.273392677307129, 0.46957525610923767, 16200, 9.7372469996277e-05]
2023-02-10 05:04:55,587	32k	INFO	====> Epoch: 214
2023-02-10 05:06:20,137	32k	INFO	====> Epoch: 215
2023-02-10 05:07:31,842	32k	INFO	Train Epoch: 216 [79%]
2023-02-10 05:07:31,842	32k	INFO	[2.339552879333496, 2.709596872329712, 11.353394508361816, 18.01609992980957, 0.5840747356414795, 16400, 9.734812840022278e-05]
2023-02-10 05:07:45,003	32k	INFO	====> Epoch: 216
2023-02-10 05:09:10,461	32k	INFO	====> Epoch: 217
2023-02-10 05:10:35,839	32k	INFO	====> Epoch: 218
2023-02-10 05:11:24,387	32k	INFO	Train Epoch: 219 [42%]
2023-02-10 05:11:24,387	32k	INFO	[2.4308414459228516, 2.6758008003234863, 9.025983810424805, 12.856972694396973, 0.7895928621292114, 16600, 9.731162741507607e-05]
2023-02-10 05:12:00,773	32k	INFO	====> Epoch: 219
2023-02-10 05:13:26,131	32k	INFO	====> Epoch: 220
2023-02-10 05:14:50,815	32k	INFO	====> Epoch: 221
2023-02-10 05:15:16,163	32k	INFO	Train Epoch: 222 [5%]
2023-02-10 05:15:16,163	32k	INFO	[2.519866704940796, 2.3976869583129883, 6.224302768707275, 9.703218460083008, 0.8612720966339111, 16800, 9.727514011608789e-05]
2023-02-10 05:16:15,647	32k	INFO	====> Epoch: 222
2023-02-10 05:17:41,078	32k	INFO	====> Epoch: 223
2023-02-10 05:18:46,053	32k	INFO	Train Epoch: 224 [68%]
2023-02-10 05:18:46,053	32k	INFO	[2.6223254203796387, 1.9520517587661743, 4.571777820587158, 8.507990837097168, 0.792948305606842, 17000, 9.725082285098293e-05]
2023-02-10 05:18:50,420	32k	INFO	Saving model and optimizer state at iteration 224 to ./logs\32k\G_17000.pth
2023-02-10 05:19:09,845	32k	INFO	Saving model and optimizer state at iteration 224 to ./logs\32k\D_17000.pth
2023-02-10 05:19:33,204	32k	INFO	====> Epoch: 224
2023-02-10 05:20:58,534	32k	INFO	====> Epoch: 225
2023-02-10 05:22:23,931	32k	INFO	====> Epoch: 226
2023-02-10 05:23:05,991	32k	INFO	Train Epoch: 227 [32%]
2023-02-10 05:23:05,991	32k	INFO	[2.3721673488616943, 2.349473476409912, 10.199991226196289, 15.970855712890625, 0.8750467300415039, 17200, 9.721435835085619e-05]
2023-02-10 05:23:48,977	32k	INFO	====> Epoch: 227
2023-02-10 05:25:14,316	32k	INFO	====> Epoch: 228
2023-02-10 05:26:35,734	32k	INFO	Train Epoch: 229 [95%]
2023-02-10 05:26:35,735	32k	INFO	[2.3928985595703125, 2.939208507537842, 17.157743453979492, 19.45735740661621, 0.6444438695907593, 17400, 9.719005628024282e-05]
2023-02-10 05:26:38,950	32k	INFO	====> Epoch: 229
2023-02-10 05:28:04,250	32k	INFO	====> Epoch: 230
2023-02-10 05:29:28,728	32k	INFO	====> Epoch: 231
2023-02-10 05:30:28,074	32k	INFO	Train Epoch: 232 [58%]
2023-02-10 05:30:28,075	32k	INFO	[2.3620455265045166, 2.3724076747894287, 9.916801452636719, 15.793679237365723, 0.8138560652732849, 17600, 9.715361456473177e-05]
2023-02-10 05:30:54,438	32k	INFO	====> Epoch: 232
2023-02-10 05:32:18,834	32k	INFO	====> Epoch: 233
2023-02-10 05:33:43,436	32k	INFO	====> Epoch: 234
2023-02-10 05:34:18,636	32k	INFO	Train Epoch: 235 [21%]
2023-02-10 05:34:18,636	32k	INFO	[2.421670913696289, 2.613611936569214, 10.162355422973633, 15.634803771972656, 0.8601481318473816, 17800, 9.711718651315591e-05]
2023-02-10 05:35:08,234	32k	INFO	====> Epoch: 235
2023-02-10 05:36:32,671	32k	INFO	====> Epoch: 236
2023-02-10 05:37:47,763	32k	INFO	Train Epoch: 237 [84%]
2023-02-10 05:37:47,764	32k	INFO	[2.3902554512023926, 2.546750783920288, 13.740601539611816, 15.754182815551758, 0.7283089756965637, 18000, 9.709290873398365e-05]
2023-02-10 05:37:52,211	32k	INFO	Saving model and optimizer state at iteration 237 to ./logs\32k\G_18000.pth
2023-02-10 05:38:05,355	32k	INFO	Saving model and optimizer state at iteration 237 to ./logs\32k\D_18000.pth
2023-02-10 05:38:18,717	32k	INFO	====> Epoch: 237
2023-02-10 05:39:44,053	32k	INFO	====> Epoch: 238
2023-02-10 05:41:09,330	32k	INFO	====> Epoch: 239
2023-02-10 05:42:01,142	32k	INFO	Train Epoch: 240 [47%]
2023-02-10 05:42:01,143	32k	INFO	[2.312722682952881, 2.6106648445129395, 9.877479553222656, 15.368383407592773, 0.6470428109169006, 18200, 9.705650344424885e-05]
2023-02-10 05:42:34,235	32k	INFO	====> Epoch: 240
2023-02-10 05:43:58,685	32k	INFO	====> Epoch: 241
2023-02-10 05:45:23,999	32k	INFO	====> Epoch: 242
2023-02-10 05:45:53,547	32k	INFO	Train Epoch: 243 [11%]
2023-02-10 05:45:53,547	32k	INFO	[2.3766026496887207, 2.4300293922424316, 12.744778633117676, 14.884074211120605, 0.6547593474388123, 18400, 9.702011180479129e-05]
2023-02-10 05:46:49,612	32k	INFO	====> Epoch: 243
2023-02-10 05:48:15,106	32k	INFO	====> Epoch: 244
2023-02-10 05:49:23,380	32k	INFO	Train Epoch: 245 [74%]
2023-02-10 05:49:23,380	32k	INFO	[2.580474376678467, 2.082796812057495, 9.039981842041016, 12.80046558380127, 0.5056825280189514, 18600, 9.699585829277933e-05]
2023-02-10 05:49:39,801	32k	INFO	====> Epoch: 245
2023-02-10 05:51:04,233	32k	INFO	====> Epoch: 246
2023-02-10 05:52:28,838	32k	INFO	====> Epoch: 247
2023-02-10 05:53:14,110	32k	INFO	Train Epoch: 248 [37%]
2023-02-10 05:53:14,110	32k	INFO	[2.426253318786621, 2.482189416885376, 7.620111465454102, 7.9587178230285645, 0.5158562064170837, 18800, 9.695948939241093e-05]
2023-02-10 05:53:53,852	32k	INFO	====> Epoch: 248
2023-02-10 05:55:18,546	32k	INFO	====> Epoch: 249
2023-02-10 05:56:42,949	32k	INFO	====> Epoch: 250
2023-02-10 05:57:05,033	32k	INFO	Train Epoch: 251 [0%]
2023-02-10 05:57:05,034	32k	INFO	[2.527033805847168, 2.064669370651245, 9.806694984436035, 12.288697242736816, 0.5984607934951782, 19000, 9.692313412867544e-05]
2023-02-10 05:57:09,464	32k	INFO	Saving model and optimizer state at iteration 251 to ./logs\32k\G_19000.pth
2023-02-10 05:57:24,997	32k	INFO	Saving model and optimizer state at iteration 251 to ./logs\32k\D_19000.pth
2023-02-10 05:58:31,373	32k	INFO	====> Epoch: 251
2023-02-10 05:59:56,772	32k	INFO	====> Epoch: 252
2023-02-10 06:00:59,380	32k	INFO	Train Epoch: 253 [63%]
2023-02-10 06:00:59,381	32k	INFO	[2.33793568611145, 2.2299203872680664, 7.934765815734863, 14.959351539611816, 0.5853436589241028, 19200, 9.689890485956725e-05]
2023-02-10 06:01:22,563	32k	INFO	====> Epoch: 253
2023-02-10 06:02:47,113	32k	INFO	====> Epoch: 254
2023-02-10 06:04:12,445	32k	INFO	====> Epoch: 255
2023-02-10 06:04:51,929	32k	INFO	Train Epoch: 256 [26%]
2023-02-10 06:04:51,929	32k	INFO	[2.5420777797698975, 2.1400043964385986, 7.56562614440918, 11.221778869628906, 0.6662202477455139, 19400, 9.68625723121918e-05]
2023-02-10 06:05:38,131	32k	INFO	====> Epoch: 256
2023-02-10 06:07:03,640	32k	INFO	====> Epoch: 257
2023-02-10 06:08:22,686	32k	INFO	Train Epoch: 258 [89%]
2023-02-10 06:08:22,686	32k	INFO	[2.2824349403381348, 2.342818260192871, 11.228169441223145, 16.061767578125, 0.9010499119758606, 19600, 9.683835818259144e-05]
2023-02-10 06:08:29,233	32k	INFO	====> Epoch: 258
2023-02-10 06:09:54,606	32k	INFO	====> Epoch: 259
2023-02-10 06:11:19,916	32k	INFO	====> Epoch: 260
2023-02-10 06:12:16,024	32k	INFO	Train Epoch: 261 [53%]
2023-02-10 06:12:16,024	32k	INFO	[2.2774453163146973, 2.862053394317627, 11.609835624694824, 18.45319366455078, 0.8751690983772278, 19800, 9.680204833738185e-05]
2023-02-10 06:12:45,792	32k	INFO	====> Epoch: 261
2023-02-10 06:14:11,129	32k	INFO	====> Epoch: 262
2023-02-10 06:15:35,580	32k	INFO	====> Epoch: 263
2023-02-10 06:16:08,423	32k	INFO	Train Epoch: 264 [16%]
2023-02-10 06:16:08,423	32k	INFO	[2.32112455368042, 2.333401918411255, 9.849132537841797, 13.351881980895996, 0.8110747933387756, 20000, 9.676575210666227e-05]
2023-02-10 06:16:13,685	32k	INFO	Saving model and optimizer state at iteration 264 to ./logs\32k\G_20000.pth
2023-02-10 06:16:30,849	32k	INFO	Saving model and optimizer state at iteration 264 to ./logs\32k\D_20000.pth
2023-02-10 06:17:26,961	32k	INFO	====> Epoch: 264
2023-02-10 06:18:52,371	32k	INFO	====> Epoch: 265
2023-02-10 06:20:05,039	32k	INFO	Train Epoch: 266 [79%]
2023-02-10 06:20:05,039	32k	INFO	[2.4292171001434326, 2.405426025390625, 10.425787925720215, 15.707857131958008, 0.6626737117767334, 20200, 9.674156218060047e-05]
2023-02-10 06:20:18,267	32k	INFO	====> Epoch: 266
2023-02-10 06:21:43,774	32k	INFO	====> Epoch: 267
2023-02-10 06:23:08,283	32k	INFO	====> Epoch: 268
2023-02-10 06:23:56,720	32k	INFO	Train Epoch: 269 [42%]
2023-02-10 06:23:56,720	32k	INFO	[2.2364232540130615, 2.6233410835266113, 12.21335506439209, 15.925817489624023, 0.2746255695819855, 20400, 9.670528862935451e-05]
2023-02-10 06:24:33,096	32k	INFO	====> Epoch: 269
2023-02-10 06:25:57,635	32k	INFO	====> Epoch: 270
2023-02-10 06:27:22,159	32k	INFO	====> Epoch: 271
2023-02-10 06:27:47,572	32k	INFO	Train Epoch: 272 [5%]
2023-02-10 06:27:47,572	32k	INFO	[2.279311180114746, 2.69355845451355, 11.382664680480957, 15.993112564086914, 0.7590271830558777, 20600, 9.666902867899003e-05]
2023-02-10 06:28:46,950	32k	INFO	====> Epoch: 272
2023-02-10 06:30:11,421	32k	INFO	====> Epoch: 273
2023-02-10 06:31:16,437	32k	INFO	Train Epoch: 274 [68%]
2023-02-10 06:31:16,437	32k	INFO	[2.2094767093658447, 2.471757411956787, 11.495461463928223, 15.169349670410156, 0.6064764857292175, 20800, 9.664486293227385e-05]
2023-02-10 06:31:36,272	32k	INFO	====> Epoch: 274
2023-02-10 06:33:00,711	32k	INFO	====> Epoch: 275
2023-02-10 06:34:25,096	32k	INFO	====> Epoch: 276
2023-02-10 06:35:06,908	32k	INFO	Train Epoch: 277 [32%]
2023-02-10 06:35:06,909	32k	INFO	[2.3740768432617188, 2.466357707977295, 10.599915504455566, 11.676641464233398, 0.681009829044342, 21000, 9.660862563871342e-05]
2023-02-10 06:35:11,320	32k	INFO	Saving model and optimizer state at iteration 277 to ./logs\32k\G_21000.pth
2023-02-10 06:35:28,883	32k	INFO	Saving model and optimizer state at iteration 277 to ./logs\32k\D_21000.pth
2023-02-10 06:36:15,635	32k	INFO	====> Epoch: 277
2023-02-10 06:37:40,991	32k	INFO	====> Epoch: 278
2023-02-10 06:39:03,277	32k	INFO	Train Epoch: 279 [95%]
2023-02-10 06:39:03,277	32k	INFO	[2.7325069904327393, 2.2234275341033936, 7.8317461013793945, 10.93569564819336, 0.5372100472450256, 21200, 9.658447499181352e-05]
2023-02-10 06:39:06,507	32k	INFO	====> Epoch: 279
2023-02-10 06:40:31,921	32k	INFO	====> Epoch: 280
2023-02-10 06:41:57,223	32k	INFO	====> Epoch: 281
2023-02-10 06:42:55,547	32k	INFO	Train Epoch: 282 [58%]
2023-02-10 06:42:55,548	32k	INFO	[2.078672409057617, 3.186306953430176, 10.578144073486328, 14.06082534790039, 0.670340895652771, 21400, 9.65482603409002e-05]
2023-02-10 06:43:21,901	32k	INFO	====> Epoch: 282
2023-02-10 06:44:46,353	32k	INFO	====> Epoch: 283
2023-02-10 06:46:10,896	32k	INFO	====> Epoch: 284
2023-02-10 06:46:46,078	32k	INFO	Train Epoch: 285 [21%]
2023-02-10 06:46:46,078	32k	INFO	[2.4770002365112305, 2.4508018493652344, 9.283089637756348, 15.895116806030273, 0.6614298224449158, 21600, 9.651205926878348e-05]
2023-02-10 06:47:35,591	32k	INFO	====> Epoch: 285
2023-02-10 06:49:00,001	32k	INFO	====> Epoch: 286
2023-02-10 06:50:14,886	32k	INFO	Train Epoch: 287 [84%]
2023-02-10 06:50:14,887	32k	INFO	[2.2746620178222656, 2.5889053344726562, 10.645721435546875, 13.369743347167969, 0.817758321762085, 21800, 9.64879327619672e-05]
2023-02-10 06:50:24,830	32k	INFO	====> Epoch: 287
2023-02-10 06:51:50,242	32k	INFO	====> Epoch: 288
2023-02-10 06:53:14,658	32k	INFO	====> Epoch: 289
2023-02-10 06:54:06,355	32k	INFO	Train Epoch: 290 [47%]
2023-02-10 06:54:06,355	32k	INFO	[2.408446788787842, 2.3364787101745605, 10.12728214263916, 14.59122085571289, 0.7084507942199707, 22000, 9.645175430986486e-05]
2023-02-10 06:54:10,737	32k	INFO	Saving model and optimizer state at iteration 290 to ./logs\32k\G_22000.pth
2023-02-10 06:54:28,834	32k	INFO	Saving model and optimizer state at iteration 290 to ./logs\32k\D_22000.pth
2023-02-10 06:55:05,411	32k	INFO	====> Epoch: 290
2023-02-10 06:56:30,627	32k	INFO	====> Epoch: 291
2023-02-10 06:57:55,820	32k	INFO	====> Epoch: 292
2023-02-10 06:58:24,516	32k	INFO	Train Epoch: 293 [11%]
2023-02-10 06:58:24,516	32k	INFO	[2.3272194862365723, 2.602001190185547, 9.372489929199219, 11.096156120300293, 0.27660641074180603, 22200, 9.641558942298625e-05]
2023-02-10 06:59:20,776	32k	INFO	====> Epoch: 293
2023-02-10 07:00:45,983	32k	INFO	====> Epoch: 294
2023-02-10 07:01:55,037	32k	INFO	Train Epoch: 295 [74%]
2023-02-10 07:01:55,037	32k	INFO	[2.390826463699341, 2.554483413696289, 8.697030067443848, 14.283463478088379, 0.6869368553161621, 22400, 9.639148703212408e-05]
2023-02-10 07:02:11,478	32k	INFO	====> Epoch: 295
2023-02-10 07:03:36,836	32k	INFO	====> Epoch: 296
2023-02-10 07:05:02,243	32k	INFO	====> Epoch: 297
2023-02-10 07:05:48,212	32k	INFO	Train Epoch: 298 [37%]
2023-02-10 07:05:48,213	32k	INFO	[2.413754940032959, 2.9149270057678223, 9.995668411254883, 12.166794776916504, 0.653400182723999, 22600, 9.635534474264972e-05]
2023-02-10 07:06:27,766	32k	INFO	====> Epoch: 298
2023-02-10 07:07:52,162	32k	INFO	====> Epoch: 299
2023-02-10 07:09:16,689	32k	INFO	====> Epoch: 300
2023-02-10 07:09:38,796	32k	INFO	Train Epoch: 301 [0%]
2023-02-10 07:09:38,796	32k	INFO	[2.2665956020355225, 2.7774581909179688, 9.704061508178711, 13.352103233337402, 0.712449312210083, 22800, 9.631921600483981e-05]
2023-02-10 07:10:41,520	32k	INFO	====> Epoch: 301
2023-02-10 07:12:06,795	32k	INFO	====> Epoch: 302
2023-02-10 07:13:08,471	32k	INFO	Train Epoch: 303 [63%]
2023-02-10 07:13:08,471	32k	INFO	[2.1530864238739014, 2.413203477859497, 11.726449012756348, 18.033466339111328, 0.6967122554779053, 23000, 9.629513770582634e-05]
2023-02-10 07:13:12,906	32k	INFO	Saving model and optimizer state at iteration 303 to ./logs\32k\G_23000.pth
2023-02-10 07:13:28,702	32k	INFO	Saving model and optimizer state at iteration 303 to ./logs\32k\D_23000.pth
2023-02-10 07:13:55,451	32k	INFO	====> Epoch: 303
2023-02-10 07:15:20,800	32k	INFO	====> Epoch: 304
2023-02-10 07:16:46,057	32k	INFO	====> Epoch: 305
2023-02-10 07:17:25,604	32k	INFO	Train Epoch: 306 [26%]
2023-02-10 07:17:25,605	32k	INFO	[2.3469924926757812, 2.375382661819458, 9.387177467346191, 12.057092666625977, -0.1277291625738144, 23200, 9.625903154283315e-05]
2023-02-10 07:18:11,964	32k	INFO	====> Epoch: 306
2023-02-10 07:19:36,400	32k	INFO	====> Epoch: 307
2023-02-10 07:20:54,517	32k	INFO	Train Epoch: 308 [89%]
2023-02-10 07:20:54,517	32k	INFO	[2.3641486167907715, 2.28696608543396, 9.959922790527344, 17.36892318725586, 0.7711434364318848, 23400, 9.62349682889948e-05]
2023-02-10 07:21:01,068	32k	INFO	====> Epoch: 308
2023-02-10 07:22:25,526	32k	INFO	====> Epoch: 309
2023-02-10 07:23:50,156	32k	INFO	====> Epoch: 310
2023-02-10 07:24:45,168	32k	INFO	Train Epoch: 311 [53%]
2023-02-10 07:24:45,169	32k	INFO	[2.5586600303649902, 2.3868942260742188, 8.270402908325195, 11.41346549987793, 0.6984982490539551, 23600, 9.619888468671259e-05]
2023-02-10 07:25:14,874	32k	INFO	====> Epoch: 311
2023-02-10 07:26:39,243	32k	INFO	====> Epoch: 312
2023-02-10 07:28:03,612	32k	INFO	====> Epoch: 313
2023-02-10 07:28:35,612	32k	INFO	Train Epoch: 314 [16%]
2023-02-10 07:28:35,613	32k	INFO	[1.8997191190719604, 2.9339983463287354, 9.256068229675293, 12.056029319763184, 0.7804506421089172, 23800, 9.61628146140899e-05]
2023-02-10 07:29:28,369	32k	INFO	====> Epoch: 314
2023-02-10 07:30:52,694	32k	INFO	====> Epoch: 315
2023-02-10 07:32:04,287	32k	INFO	Train Epoch: 316 [79%]
2023-02-10 07:32:04,287	32k	INFO	[2.4035465717315674, 2.7094507217407227, 9.096111297607422, 14.042303085327148, 0.8556358814239502, 24000, 9.613877541298036e-05]
2023-02-10 07:32:08,663	32k	INFO	Saving model and optimizer state at iteration 316 to ./logs\32k\G_24000.pth
2023-02-10 07:32:24,726	32k	INFO	Saving model and optimizer state at iteration 316 to ./logs\32k\D_24000.pth
2023-02-10 07:32:41,400	32k	INFO	====> Epoch: 316
2023-02-10 07:34:06,691	32k	INFO	====> Epoch: 317