tumor / app.py
JJjdjka's picture
Upload 2 files
5b120d8 verified
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
model_path = "xception.keras"
model = tf.keras.models.load_model(model_path)
# Define the core prediction function
def predict_tumor(image):
# Preprocess image
print(type(image))
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale
image = np.array(image)
image = np.expand_dims(image, axis=0) # same as image[None, ...]
# Predict
prediction = model.predict(image)
# No need to apply sigmoid, as the output layer already uses softmax
# Convert the probabilities to rounded values
prediction = np.round(prediction, 2)
# Separate the probabilities for each class
p_non_tumor = prediction[0][0] # Probability for class 'charmander'
tumor = prediction[0][1] # Probability for class 'mewto'
return {'non_tumor': p_non_tumor, 'mewto': tumor}
# Create the Gradio interface
input_image = gr.Image()
iface = gr.Interface(
fn=predict_tumor,
inputs=input_image,
outputs=gr.Label(),
examples=["images/1 no.jpeg", "images/3 no.jpg", "images/2 no.jpeg", "images/5 no.jpg", "images/4 no.jpg", "images/Y1.jpg", "images/Y2.jpg", "images/Y7.jpg", "images/Y4.jpg", "images/Y8.jpg"],
description="TEST.")
iface.launch()