|
import torch |
|
from torch.utils.data import DataLoader |
|
from multiprocessing import Pool |
|
import commons |
|
import utils |
|
from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate |
|
from tqdm import tqdm |
|
import warnings |
|
|
|
from text import cleaned_text_to_sequence, get_bert |
|
|
|
config_path = 'configs/base.json' |
|
hps = utils.get_hparams_from_file(config_path) |
|
|
|
def process_line(line): |
|
_id, spk, language_str, text, phones, tone, word2ph = line.strip().split("|") |
|
phone = phones.split(" ") |
|
tone = [int(i) for i in tone.split(" ")] |
|
word2ph = [int(i) for i in word2ph.split(" ")] |
|
w2pho = [i for i in word2ph] |
|
word2ph = [i for i in word2ph] |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
wav_path = f'{_id}' |
|
|
|
bert_path = wav_path.replace(".wav", ".bert.pt") |
|
try: |
|
bert = torch.load(bert_path) |
|
assert bert.shape[-1] == len(phone) |
|
except: |
|
bert = get_bert(text, word2ph, language_str) |
|
assert bert.shape[-1] == len(phone) |
|
torch.save(bert, bert_path) |
|
|
|
|
|
if __name__ == '__main__': |
|
lines = [] |
|
with open(hps.data.training_files, encoding='utf-8' ) as f: |
|
lines.extend(f.readlines()) |
|
|
|
|
|
|
|
|
|
with Pool(processes=2) as pool: |
|
for _ in tqdm(pool.imap_unordered(process_line, lines)): |
|
pass |