File size: 3,440 Bytes
39b86f7
 
c7430ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39b86f7
 
c7430ca
 
39b86f7
c7430ca
39b86f7
c7430ca
 
 
 
 
 
 
 
39b86f7
c7430ca
39b86f7
c7430ca
39b86f7
c7430ca
39b86f7
c7430ca
39b86f7
c7430ca
39b86f7
c7430ca
39b86f7
c7430ca
39b86f7
c7430ca
39b86f7
c7430ca
 
 
 
 
 
 
 
 
 
 
39b86f7
c7430ca
39b86f7
c7430ca
 
 
 
 
 
 
 
 
 
 
 
 
39b86f7
 
c7430ca
39b86f7
c7430ca
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
library_name: transformers
language:
- en
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- JacobLinCool/ami-disfluent
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-verbatim-3-lora
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: JacobLinCool/ami-disfluent
      type: JacobLinCool/ami-disfluent
    metrics:
    - type: wer
      value: 7.726913698959442
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-turbo-verbatim-3-lora

This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/ami-disfluent dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1459
- Wer: 7.7269
- Cer: 3.2519
- Decode Runtime: 111.0004
- Wer Runtime: 0.0705
- Cer Runtime: 0.0932

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     | Cer     | Decode Runtime | Wer Runtime | Cer Runtime |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:|
| No log        | 0     | 0    | 2.2169          | 32.7209 | 17.9205 | 106.5404       | 0.0825      | 0.1203      |
| 0.1681        | 0.1   | 100  | 0.1998          | 9.9454  | 4.1038  | 108.1653       | 0.0730      | 0.0960      |
| 0.1025        | 0.2   | 200  | 0.1693          | 8.6885  | 3.7458  | 109.6779       | 0.0707      | 0.0957      |
| 0.2508        | 0.3   | 300  | 0.1590          | 8.3897  | 3.4931  | 110.3209       | 0.0716      | 0.0947      |
| 0.1446        | 1.088 | 400  | 0.1571          | 8.2626  | 3.4939  | 110.1930       | 0.0718      | 0.0951      |
| 0.1833        | 1.188 | 500  | 0.1505          | 8.0463  | 3.4298  | 110.3821       | 0.0709      | 0.0950      |
| 0.1409        | 1.288 | 600  | 0.1489          | 7.9948  | 3.3401  | 110.6880       | 0.0709      | 0.0939      |
| 0.1184        | 2.076 | 700  | 0.1492          | 7.9124  | 3.3181  | 110.6153       | 0.0728      | 0.0946      |
| 0.1737        | 2.176 | 800  | 0.1468          | 7.8128  | 3.2583  | 110.7120       | 0.0714      | 0.0947      |
| 0.1522        | 2.276 | 900  | 0.1462          | 7.7887  | 3.2604  | 110.7694       | 0.0710      | 0.0937      |
| 0.1077        | 3.064 | 1000 | 0.1459          | 7.7269  | 3.2519  | 111.0004       | 0.0705      | 0.0932      |


### Framework versions

- PEFT 0.14.0
- Transformers 4.48.0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0