File size: 3,440 Bytes
39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca 39b86f7 c7430ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
library_name: transformers
language:
- en
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- JacobLinCool/ami-disfluent
metrics:
- wer
model-index:
- name: whisper-large-v3-turbo-verbatim-3-lora
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: JacobLinCool/ami-disfluent
type: JacobLinCool/ami-disfluent
metrics:
- type: wer
value: 7.726913698959442
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-turbo-verbatim-3-lora
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the JacobLinCool/ami-disfluent dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1459
- Wer: 7.7269
- Cer: 3.2519
- Decode Runtime: 111.0004
- Wer Runtime: 0.0705
- Cer Runtime: 0.0932
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:|
| No log | 0 | 0 | 2.2169 | 32.7209 | 17.9205 | 106.5404 | 0.0825 | 0.1203 |
| 0.1681 | 0.1 | 100 | 0.1998 | 9.9454 | 4.1038 | 108.1653 | 0.0730 | 0.0960 |
| 0.1025 | 0.2 | 200 | 0.1693 | 8.6885 | 3.7458 | 109.6779 | 0.0707 | 0.0957 |
| 0.2508 | 0.3 | 300 | 0.1590 | 8.3897 | 3.4931 | 110.3209 | 0.0716 | 0.0947 |
| 0.1446 | 1.088 | 400 | 0.1571 | 8.2626 | 3.4939 | 110.1930 | 0.0718 | 0.0951 |
| 0.1833 | 1.188 | 500 | 0.1505 | 8.0463 | 3.4298 | 110.3821 | 0.0709 | 0.0950 |
| 0.1409 | 1.288 | 600 | 0.1489 | 7.9948 | 3.3401 | 110.6880 | 0.0709 | 0.0939 |
| 0.1184 | 2.076 | 700 | 0.1492 | 7.9124 | 3.3181 | 110.6153 | 0.0728 | 0.0946 |
| 0.1737 | 2.176 | 800 | 0.1468 | 7.8128 | 3.2583 | 110.7120 | 0.0714 | 0.0947 |
| 0.1522 | 2.276 | 900 | 0.1462 | 7.7887 | 3.2604 | 110.7694 | 0.0710 | 0.0937 |
| 0.1077 | 3.064 | 1000 | 0.1459 | 7.7269 | 3.2519 | 111.0004 | 0.0705 | 0.0932 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |