JamesJenkins
commited on
End of training
Browse files
README.md
CHANGED
@@ -23,10 +23,10 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
-
value: 0.
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -36,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
36 |
|
37 |
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 0.
|
40 |
-
- Accuracy: 0.
|
41 |
-
- F1: 0.
|
42 |
|
43 |
## Model description
|
44 |
|
@@ -61,43 +61,33 @@ The following hyperparameters were used during training:
|
|
61 |
- train_batch_size: 2
|
62 |
- eval_batch_size: 2
|
63 |
- seed: 2024
|
64 |
-
- gradient_accumulation_steps:
|
65 |
-
- total_train_batch_size:
|
66 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
- lr_scheduler_type: linear
|
68 |
- lr_scheduler_warmup_ratio: 0.1
|
69 |
-
- num_epochs:
|
70 |
- mixed_precision_training: Native AMP
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
-
| Training Loss | Epoch
|
75 |
-
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.0001 | 10.9956 | 1237 | 0.6718 | 0.86 | 0.8600 |
|
87 |
-
| 0.0001 | 12.0 | 1350 | 0.6712 | 0.85 | 0.85 |
|
88 |
-
| 0.0001 | 12.9956 | 1462 | 0.6942 | 0.86 | 0.8600 |
|
89 |
-
| 0.0001 | 14.0 | 1575 | 0.7002 | 0.86 | 0.8600 |
|
90 |
-
| 0.0176 | 14.9956 | 1687 | 0.7053 | 0.86 | 0.8600 |
|
91 |
-
| 0.0001 | 16.0 | 1800 | 0.7140 | 0.86 | 0.8600 |
|
92 |
-
| 0.0001 | 16.9956 | 1912 | 0.7089 | 0.86 | 0.8600 |
|
93 |
-
| 0.0 | 18.0 | 2025 | 0.7120 | 0.86 | 0.8600 |
|
94 |
-
| 0.0628 | 18.9956 | 2137 | 0.7162 | 0.86 | 0.8600 |
|
95 |
-
| 0.0037 | 19.9111 | 2240 | 0.7149 | 0.86 | 0.8600 |
|
96 |
|
97 |
|
98 |
### Framework versions
|
99 |
|
100 |
- Transformers 4.42.4
|
101 |
-
- Pytorch 2.
|
102 |
- Datasets 2.21.0
|
103 |
- Tokenizers 0.19.1
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.87
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
+
value: 0.87
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
36 |
|
37 |
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.5658
|
40 |
+
- Accuracy: 0.87
|
41 |
+
- F1: 0.87
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
61 |
- train_batch_size: 2
|
62 |
- eval_batch_size: 2
|
63 |
- seed: 2024
|
64 |
+
- gradient_accumulation_steps: 8
|
65 |
+
- total_train_batch_size: 16
|
66 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
- lr_scheduler_type: linear
|
68 |
- lr_scheduler_warmup_ratio: 0.1
|
69 |
+
- num_epochs: 10
|
70 |
- mixed_precision_training: Native AMP
|
71 |
|
72 |
### Training results
|
73 |
|
74 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
75 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
|
76 |
+
| 0.8357 | 0.9956 | 56 | 0.6582 | 0.82 | 0.82 |
|
77 |
+
| 0.4742 | 1.9911 | 112 | 0.6527 | 0.81 | 0.81 |
|
78 |
+
| 0.3344 | 2.9867 | 168 | 0.9048 | 0.76 | 0.76 |
|
79 |
+
| 0.0659 | 4.0 | 225 | 0.6998 | 0.84 | 0.8400 |
|
80 |
+
| 0.0966 | 4.9956 | 281 | 0.6737 | 0.83 | 0.83 |
|
81 |
+
| 0.0026 | 5.9911 | 337 | 0.5133 | 0.89 | 0.89 |
|
82 |
+
| 0.0038 | 6.9867 | 393 | 0.5704 | 0.86 | 0.8600 |
|
83 |
+
| 0.0005 | 8.0 | 450 | 0.5722 | 0.86 | 0.8600 |
|
84 |
+
| 0.0003 | 8.9956 | 506 | 0.5632 | 0.87 | 0.87 |
|
85 |
+
| 0.0003 | 9.9556 | 560 | 0.5658 | 0.87 | 0.87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
89 |
|
90 |
- Transformers 4.42.4
|
91 |
+
- Pytorch 2.4.0+cu121
|
92 |
- Datasets 2.21.0
|
93 |
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 344814656
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:693b8f1ddf6d4ea4efbcb7ff2e60a46edd67eb264433d7a798cff4f6e00eeda1
|
3 |
size 344814656
|
runs/Aug27_09-10-11_75209667f075/events.out.tfevents.1724749825.75209667f075.596.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:192c251c128bc35fc3bcecd955173344cda774260c0b404ccb54d2751ee66e21
|
3 |
+
size 32884
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5176
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b0457c98a10fd7fea297df20ccd8ad719270517246fdf259a76de3e7033cc02
|
3 |
size 5176
|