upload PPO trained agent for Lunar Lander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_lunarLander-v2.zip +3 -0
- ppo_lunarLander-v2/_stable_baselines3_version +1 -0
- ppo_lunarLander-v2/data +95 -0
- ppo_lunarLander-v2/policy.optimizer.pth +3 -0
- ppo_lunarLander-v2/policy.pth +3 -0
- ppo_lunarLander-v2/pytorch_variables.pth +3 -0
- ppo_lunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.96 +/- 13.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ffa1bcd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ffa1bcdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ffa1bce50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ffa1bcee0>", "_build": "<function ActorCriticPolicy._build at 0x7f3ffa1bcf70>", "forward": "<function ActorCriticPolicy.forward at 0x7f3ffa1c0040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3ffa1c00d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ffa1c0160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3ffa1c01f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ffa1c0280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ffa1c0310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ffa1c03a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3ffa1be1b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677403237000106199, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaLhL0p1EK6mGImPb37MjNNOoG7w0tmMwAAAAAAAIA/gEYFPQqeZrsH1wK+L/74vedi+jwiSm8/AACAPwAAgD/aBYG9DHyzPy52K78cpxi+p4ZYPOYWyb0AAAAAAAAAAFOAX77xfAS9nkFCOtcmOTl6MWY+6PqVuQAAgD8AAIA/2oJwvpTCHL1iY7e7JnJUupILiD79gh07AACAPwAAgD9wZHG+XIwJPSE+gDpdXWu57DOcvpgu0rkAAAAAAACAP30ZdL4UD6U/TYMTvwyiJL9/pBi+63tNvgAAAAAAAAAAc6znvZc0Vj+gAEG+j5oJvziQ5b2Dp909AAAAAAAAAADSILu+fJRSPv7Fmz7TFF++IJ2EvaedBj4AAAAAAAAAAE0+HL326Au4/oyQObwQ8zRwkfk78NKvuAAAgD8AAIA/EytkPkVU4z7SdJ++bdugvgMTersXB7q9AAAAAAAAAAAAdbU8q43nPl1ZUT1QM5y+jAnzPODVEDwAAAAAAAAAAOZEXr06DY0/fsooviRK876Xc5K8MqyKOwAAAAAAAAAAM0sxO6S9Nbt2kII8iiRSPHpxW7z6wzc9AACAPwAAgD8ga0e+K6vFPq3n1DwSg82+54zeveSNpz0AAAAAAAAAAFpiqr0eb3E/LgqJviIlCb9/Fkq9ZojdvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9KljldI8ckCUhpRSlIwBbJRL54wBdJRHQJaxycoYvWZ1fZQoaAZoCWgPQwg0D2CRXyRxQJSGlFKUaBVNPgFoFkdAlrHyfg75mHV9lChoBmgJaA9DCCGsxhJWIHBAlIaUUpRoFUvnaBZHQJax+H/Lkjp1fZQoaAZoCWgPQwiAD1679CRxQJSGlFKUaBVNCQFoFkdAlrMkj1PFenV9lChoBmgJaA9DCA/QfTkz6nBAlIaUUpRoFU0bAWgWR0CWszmXPZ7HdX2UKGgGaAloD0MIq6+uCpQ+cECUhpRSlGgVS/xoFkdAlrO2hM8HOnV9lChoBmgJaA9DCBXikXi5unJAlIaUUpRoFUvsaBZHQJa1u5oXbdt1fZQoaAZoCWgPQwh2qKYkazpyQJSGlFKUaBVL92gWR0CWtdwGW2PUdX2UKGgGaAloD0MIDkqYafsicUCUhpRSlGgVS/RoFkdAlrhc0DU3GXV9lChoBmgJaA9DCDFfXoD97m9AlIaUUpRoFU01AWgWR0CWuOgkka/AdX2UKGgGaAloD0MIeei7W1k/bkCUhpRSlGgVS+RoFkdAlrj5QtSQ5nV9lChoBmgJaA9DCP/LtWgBE3JAlIaUUpRoFUvoaBZHQJa7bHFPznR1fZQoaAZoCWgPQwjzjeiedWZwQJSGlFKUaBVL6mgWR0CWu7aiblRxdX2UKGgGaAloD0MIByXMtH0zckCUhpRSlGgVTSwBaBZHQJa8H9ETg2t1fZQoaAZoCWgPQwiuuaP/ZV9wQJSGlFKUaBVL/mgWR0CWvLADq4YrdX2UKGgGaAloD0MIbCHIQYnHckCUhpRSlGgVTTIBaBZHQJa+UtyxRl91fZQoaAZoCWgPQwhINez3xN1vQJSGlFKUaBVNBAFoFkdAlr58KgIyCXV9lChoBmgJaA9DCLk16bZEGHFAlIaUUpRoFU1IAWgWR0CWvr9wFTvRdX2UKGgGaAloD0MIscBXdGvUcUCUhpRSlGgVTQYBaBZHQJa/MuK4x1x1fZQoaAZoCWgPQwiU+rK0E2dxQJSGlFKUaBVNGAFoFkdAlr9DYqXnhnV9lChoBmgJaA9DCB7GpL+XYm9AlIaUUpRoFUv8aBZHQJbBC8Empl11fZQoaAZoCWgPQwh/9iNFJO1wQJSGlFKUaBVNDQFoFkdAlsGnB+F10XV9lChoBmgJaA9DCM77/zhhGiBAlIaUUpRoFUuOaBZHQJbCSYLLIPt1fZQoaAZoCWgPQwjpX5LKVINyQJSGlFKUaBVL+2gWR0CWwyhnrY5DdX2UKGgGaAloD0MIjZlEvWDTcECUhpRSlGgVTRABaBZHQJbDvZpSJj51fZQoaAZoCWgPQwhUqkTZW+xdQJSGlFKUaBVN6ANoFkdAlsP5bdJrcnV9lChoBmgJaA9DCDbM0Hii/3JAlIaUUpRoFU0oAWgWR0CWxBzXBguzdX2UKGgGaAloD0MIqrpHNlfxb0CUhpRSlGgVS+9oFkdAlsRWHtWuHXV9lChoBmgJaA9DCLprCfmgh3JAlIaUUpRoFU0JAWgWR0CWxSVU+9rXdX2UKGgGaAloD0MI6l28HzfTcECUhpRSlGgVS9ZoFkdAlsVEF4cFQnV9lChoBmgJaA9DCEkPQ6uTWHFAlIaUUpRoFUvcaBZHQJbGAsf7rLR1fZQoaAZoCWgPQwhUG5yI/jtyQJSGlFKUaBVNLgFoFkdAlsZUzoEB83V9lChoBmgJaA9DCD+RJ0nXnBdAlIaUUpRoFUuAaBZHQJbHTLJSzgN1fZQoaAZoCWgPQwhsQlpjUIBwQJSGlFKUaBVNBgFoFkdAlshWMXJo03V9lChoBmgJaA9DCCpXeJfLDHFAlIaUUpRoFU1CAWgWR0CWyHkRjBl+dX2UKGgGaAloD0MIIZIhxxZMcUCUhpRSlGgVTQwBaBZHQJbJFv5xiod1fZQoaAZoCWgPQwhVoYFYttltQJSGlFKUaBVNGwFoFkdAlsoucpb2UXV9lChoBmgJaA9DCAlvD0IAk3JAlIaUUpRoFU0KAWgWR0CWypCJXQt0dX2UKGgGaAloD0MI1elA1pN7ckCUhpRSlGgVTQ0BaBZHQJbLOZrpJPJ1fZQoaAZoCWgPQwjONczQeAhEQJSGlFKUaBVLwmgWR0CWy4tCzC1rdX2UKGgGaAloD0MIZ+4h4bt2ckCUhpRSlGgVTQMBaBZHQJbLlMuez2R1fZQoaAZoCWgPQwhKlpNQ+qByQJSGlFKUaBVNAgFoFkdAlsxtp/PPcHV9lChoBmgJaA9DCGluhbCacG1AlIaUUpRoFUv+aBZHQJbMcVSGahJ1fZQoaAZoCWgPQwh9eJYgI+NeQJSGlFKUaBVN6ANoFkdAlsx5ccENfHV9lChoBmgJaA9DCPOv5ZWrT3FAlIaUUpRoFU0wAWgWR0CWzJCGvfTDdX2UKGgGaAloD0MIceXsnZGfcECUhpRSlGgVS91oFkdAls2CpFTef3V9lChoBmgJaA9DCFNA2v/AlXBAlIaUUpRoFU0DAWgWR0CWzYmEoOQRdX2UKGgGaAloD0MIiUM2kK52bkCUhpRSlGgVS+hoFkdAls6jp1RtQHV9lChoBmgJaA9DCPcfmQ7dBHFAlIaUUpRoFU0UAWgWR0CW52L6UJOWdX2UKGgGaAloD0MIHlTiOgZ6ckCUhpRSlGgVTQYBaBZHQJbnnjDKoyd1fZQoaAZoCWgPQwguWKoLuDxxQJSGlFKUaBVNAAFoFkdAluiGP5pJw3V9lChoBmgJaA9DCEfn/BQH43BAlIaUUpRoFUvraBZHQJbo84ffXPJ1fZQoaAZoCWgPQwjX+412XCxsQJSGlFKUaBVL82gWR0CW6c5DZ13ddX2UKGgGaAloD0MIDOnwEEaTb0CUhpRSlGgVS/VoFkdAlunciW3Sa3V9lChoBmgJaA9DCGb2eYwyQnBAlIaUUpRoFUvmaBZHQJbqll7MPjJ1fZQoaAZoCWgPQwjFOH8TCjRuQJSGlFKUaBVNOQFoFkdAlutppeu3dHV9lChoBmgJaA9DCJZZhGKrUW1AlIaUUpRoFUv/aBZHQJbrus6q8151fZQoaAZoCWgPQwgp54u9F0coQJSGlFKUaBVLlGgWR0CW7QE/jbSJdX2UKGgGaAloD0MIsMka9RCsbECUhpRSlGgVTVABaBZHQJbvcUIsyzp1fZQoaAZoCWgPQwjsoX2s4FNxQJSGlFKUaBVNEwFoFkdAlvCs2rGR3nV9lChoBmgJaA9DCATG+gYmZW5AlIaUUpRoFU1GAWgWR0CW8QFNcnmadX2UKGgGaAloD0MIArhZvNgbckCUhpRSlGgVTU4BaBZHQJbxSxHG0eF1fZQoaAZoCWgPQwju7CsPUsNtQJSGlFKUaBVL8mgWR0CW8b5hBqsVdX2UKGgGaAloD0MICBwJNNi6cECUhpRSlGgVS9toFkdAlvOjT8YQ8XV9lChoBmgJaA9DCAk02NR5FDzAlIaUUpRoFUuQaBZHQJbzrOlfqot1fZQoaAZoCWgPQwgfZ5qw/Z5vQJSGlFKUaBVL42gWR0CW9A6p5u63dX2UKGgGaAloD0MIKULqdnY/b0CUhpRSlGgVTQcBaBZHQJb0IkJKJ2t1fZQoaAZoCWgPQwhmZmZm5pltQJSGlFKUaBVNwQFoFkdAlvSDVtoBaXV9lChoBmgJaA9DCFhzgGAOMm1AlIaUUpRoFU0jAWgWR0CW9duwX668dX2UKGgGaAloD0MIIv5hS49nbkCUhpRSlGgVS/xoFkdAlvaF3ljmS3V9lChoBmgJaA9DCDLlQ1D1nXBAlIaUUpRoFUv+aBZHQJb25XcQAdZ1fZQoaAZoCWgPQwhXdsHgmuRiQJSGlFKUaBVN6ANoFkdAlvgA6p5u63V9lChoBmgJaA9DCFvSUQ5miWBAlIaUUpRoFU3oA2gWR0CW+LIIF/x2dX2UKGgGaAloD0MI+S6lLhnTbkCUhpRSlGgVS/NoFkdAlvrZ9qk/KXV9lChoBmgJaA9DCA9j0t9LFG5AlIaUUpRoFU0YAWgWR0CW+waAFxGUdX2UKGgGaAloD0MImWVPAhu9cUCUhpRSlGgVTRQBaBZHQJb8C5BkZrJ1fZQoaAZoCWgPQwj52ch1U5VwQJSGlFKUaBVL7GgWR0CW/Gml67d0dX2UKGgGaAloD0MIxciSOVaDcUCUhpRSlGgVS+NoFkdAlvy9OqNp/XV9lChoBmgJaA9DCPZ+ox33PnJAlIaUUpRoFU0YAWgWR0CW/cgccU/OdX2UKGgGaAloD0MIXp7OFaWVbkCUhpRSlGgVS/BoFkdAlv8EXLvCuXV9lChoBmgJaA9DCJlFKLYChXJAlIaUUpRoFU2OAWgWR0CW/4gLJCBxdX2UKGgGaAloD0MIVaTC2IICcUCUhpRSlGgVTSABaBZHQJb/y4J/oaF1fZQoaAZoCWgPQwiaQuc1NqhwQJSGlFKUaBVNFQFoFkdAlwHEcfeUIXV9lChoBmgJaA9DCPzIrUn3DXJAlIaUUpRoFU2ZAWgWR0CXAnWkrPMTdX2UKGgGaAloD0MI/BcIAqTMckCUhpRSlGgVTXEBaBZHQJcDLyc0+C91fZQoaAZoCWgPQwiH3uLh/cRxQJSGlFKUaBVL/mgWR0CXA2sDW9UTdX2UKGgGaAloD0MIX8/XLFdOcECUhpRSlGgVTcQBaBZHQJcECJSBK+V1fZQoaAZoCWgPQwja5PBJJy1xQJSGlFKUaBVNawFoFkdAlwQ1+7UXpHV9lChoBmgJaA9DCNNKIZALsXNAlIaUUpRoFU0nAWgWR0CXBI02tMfzdX2UKGgGaAloD0MI26fjMYNDcUCUhpRSlGgVTRQBaBZHQJcFI+6iCat1fZQoaAZoCWgPQwiuLNFZJkpwQJSGlFKUaBVNEgFoFkdAlwVtFa0Qb3V9lChoBmgJaA9DCHsS2JwDHnFAlIaUUpRoFU0GAWgWR0CXBlcSoOx0dX2UKGgGaAloD0MI9n04SAghb0CUhpRSlGgVTUABaBZHQJcHBroGIKt1fZQoaAZoCWgPQwgaFw6EJOFwQJSGlFKUaBVNEAFoFkdAlwe0dq+JxnV9lChoBmgJaA9DCKWisfb3Z29AlIaUUpRoFU0MAWgWR0CXCDljmSyMdX2UKGgGaAloD0MI6E6w/zqDckCUhpRSlGgVTUEBaBZHQJcJryNGViZ1fZQoaAZoCWgPQwgT0hqDzmhxQJSGlFKUaBVL0WgWR0CXCaqS5iEydX2UKGgGaAloD0MILNUFvIy9cECUhpRSlGgVS/FoFkdAlwnY8yN4q3V9lChoBmgJaA9DCMjO29is73FAlIaUUpRoFU0EAWgWR0CXCdLBsQ/YdX2UKGgGaAloD0MIlBEXgIaFckCUhpRSlGgVS/toFkdAlwq9VFQVK3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo_lunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f20c019c98a43cfbc44c6ae000537e6438fbd647590a1d89bf4f0a3262a6289c
|
3 |
+
size 147372
|
ppo_lunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo_lunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3ffa1bcd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3ffa1bcdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3ffa1bce50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3ffa1bcee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3ffa1bcf70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3ffa1c0040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3ffa1c00d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3ffa1c0160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3ffa1c01f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3ffa1c0280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3ffa1c0310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3ffa1c03a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f3ffa1be1b0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677403237000106199,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaLhL0p1EK6mGImPb37MjNNOoG7w0tmMwAAAAAAAIA/gEYFPQqeZrsH1wK+L/74vedi+jwiSm8/AACAPwAAgD/aBYG9DHyzPy52K78cpxi+p4ZYPOYWyb0AAAAAAAAAAFOAX77xfAS9nkFCOtcmOTl6MWY+6PqVuQAAgD8AAIA/2oJwvpTCHL1iY7e7JnJUupILiD79gh07AACAPwAAgD9wZHG+XIwJPSE+gDpdXWu57DOcvpgu0rkAAAAAAACAP30ZdL4UD6U/TYMTvwyiJL9/pBi+63tNvgAAAAAAAAAAc6znvZc0Vj+gAEG+j5oJvziQ5b2Dp909AAAAAAAAAADSILu+fJRSPv7Fmz7TFF++IJ2EvaedBj4AAAAAAAAAAE0+HL326Au4/oyQObwQ8zRwkfk78NKvuAAAgD8AAIA/EytkPkVU4z7SdJ++bdugvgMTersXB7q9AAAAAAAAAAAAdbU8q43nPl1ZUT1QM5y+jAnzPODVEDwAAAAAAAAAAOZEXr06DY0/fsooviRK876Xc5K8MqyKOwAAAAAAAAAAM0sxO6S9Nbt2kII8iiRSPHpxW7z6wzc9AACAPwAAgD8ga0e+K6vFPq3n1DwSg82+54zeveSNpz0AAAAAAAAAAFpiqr0eb3E/LgqJviIlCb9/Fkq9ZojdvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9KljldI8ckCUhpRSlIwBbJRL54wBdJRHQJaxycoYvWZ1fZQoaAZoCWgPQwg0D2CRXyRxQJSGlFKUaBVNPgFoFkdAlrHyfg75mHV9lChoBmgJaA9DCCGsxhJWIHBAlIaUUpRoFUvnaBZHQJax+H/Lkjp1fZQoaAZoCWgPQwiAD1679CRxQJSGlFKUaBVNCQFoFkdAlrMkj1PFenV9lChoBmgJaA9DCA/QfTkz6nBAlIaUUpRoFU0bAWgWR0CWszmXPZ7HdX2UKGgGaAloD0MIq6+uCpQ+cECUhpRSlGgVS/xoFkdAlrO2hM8HOnV9lChoBmgJaA9DCBXikXi5unJAlIaUUpRoFUvsaBZHQJa1u5oXbdt1fZQoaAZoCWgPQwh2qKYkazpyQJSGlFKUaBVL92gWR0CWtdwGW2PUdX2UKGgGaAloD0MIDkqYafsicUCUhpRSlGgVS/RoFkdAlrhc0DU3GXV9lChoBmgJaA9DCDFfXoD97m9AlIaUUpRoFU01AWgWR0CWuOgkka/AdX2UKGgGaAloD0MIeei7W1k/bkCUhpRSlGgVS+RoFkdAlrj5QtSQ5nV9lChoBmgJaA9DCP/LtWgBE3JAlIaUUpRoFUvoaBZHQJa7bHFPznR1fZQoaAZoCWgPQwjzjeiedWZwQJSGlFKUaBVL6mgWR0CWu7aiblRxdX2UKGgGaAloD0MIByXMtH0zckCUhpRSlGgVTSwBaBZHQJa8H9ETg2t1fZQoaAZoCWgPQwiuuaP/ZV9wQJSGlFKUaBVL/mgWR0CWvLADq4YrdX2UKGgGaAloD0MIbCHIQYnHckCUhpRSlGgVTTIBaBZHQJa+UtyxRl91fZQoaAZoCWgPQwhINez3xN1vQJSGlFKUaBVNBAFoFkdAlr58KgIyCXV9lChoBmgJaA9DCLk16bZEGHFAlIaUUpRoFU1IAWgWR0CWvr9wFTvRdX2UKGgGaAloD0MIscBXdGvUcUCUhpRSlGgVTQYBaBZHQJa/MuK4x1x1fZQoaAZoCWgPQwiU+rK0E2dxQJSGlFKUaBVNGAFoFkdAlr9DYqXnhnV9lChoBmgJaA9DCB7GpL+XYm9AlIaUUpRoFUv8aBZHQJbBC8Empl11fZQoaAZoCWgPQwh/9iNFJO1wQJSGlFKUaBVNDQFoFkdAlsGnB+F10XV9lChoBmgJaA9DCM77/zhhGiBAlIaUUpRoFUuOaBZHQJbCSYLLIPt1fZQoaAZoCWgPQwjpX5LKVINyQJSGlFKUaBVL+2gWR0CWwyhnrY5DdX2UKGgGaAloD0MIjZlEvWDTcECUhpRSlGgVTRABaBZHQJbDvZpSJj51fZQoaAZoCWgPQwhUqkTZW+xdQJSGlFKUaBVN6ANoFkdAlsP5bdJrcnV9lChoBmgJaA9DCDbM0Hii/3JAlIaUUpRoFU0oAWgWR0CWxBzXBguzdX2UKGgGaAloD0MIqrpHNlfxb0CUhpRSlGgVS+9oFkdAlsRWHtWuHXV9lChoBmgJaA9DCLprCfmgh3JAlIaUUpRoFU0JAWgWR0CWxSVU+9rXdX2UKGgGaAloD0MI6l28HzfTcECUhpRSlGgVS9ZoFkdAlsVEF4cFQnV9lChoBmgJaA9DCEkPQ6uTWHFAlIaUUpRoFUvcaBZHQJbGAsf7rLR1fZQoaAZoCWgPQwhUG5yI/jtyQJSGlFKUaBVNLgFoFkdAlsZUzoEB83V9lChoBmgJaA9DCD+RJ0nXnBdAlIaUUpRoFUuAaBZHQJbHTLJSzgN1fZQoaAZoCWgPQwhsQlpjUIBwQJSGlFKUaBVNBgFoFkdAlshWMXJo03V9lChoBmgJaA9DCCpXeJfLDHFAlIaUUpRoFU1CAWgWR0CWyHkRjBl+dX2UKGgGaAloD0MIIZIhxxZMcUCUhpRSlGgVTQwBaBZHQJbJFv5xiod1fZQoaAZoCWgPQwhVoYFYttltQJSGlFKUaBVNGwFoFkdAlsoucpb2UXV9lChoBmgJaA9DCAlvD0IAk3JAlIaUUpRoFU0KAWgWR0CWypCJXQt0dX2UKGgGaAloD0MI1elA1pN7ckCUhpRSlGgVTQ0BaBZHQJbLOZrpJPJ1fZQoaAZoCWgPQwjONczQeAhEQJSGlFKUaBVLwmgWR0CWy4tCzC1rdX2UKGgGaAloD0MIZ+4h4bt2ckCUhpRSlGgVTQMBaBZHQJbLlMuez2R1fZQoaAZoCWgPQwhKlpNQ+qByQJSGlFKUaBVNAgFoFkdAlsxtp/PPcHV9lChoBmgJaA9DCGluhbCacG1AlIaUUpRoFUv+aBZHQJbMcVSGahJ1fZQoaAZoCWgPQwh9eJYgI+NeQJSGlFKUaBVN6ANoFkdAlsx5ccENfHV9lChoBmgJaA9DCPOv5ZWrT3FAlIaUUpRoFU0wAWgWR0CWzJCGvfTDdX2UKGgGaAloD0MIceXsnZGfcECUhpRSlGgVS91oFkdAls2CpFTef3V9lChoBmgJaA9DCFNA2v/AlXBAlIaUUpRoFU0DAWgWR0CWzYmEoOQRdX2UKGgGaAloD0MIiUM2kK52bkCUhpRSlGgVS+hoFkdAls6jp1RtQHV9lChoBmgJaA9DCPcfmQ7dBHFAlIaUUpRoFU0UAWgWR0CW52L6UJOWdX2UKGgGaAloD0MIHlTiOgZ6ckCUhpRSlGgVTQYBaBZHQJbnnjDKoyd1fZQoaAZoCWgPQwguWKoLuDxxQJSGlFKUaBVNAAFoFkdAluiGP5pJw3V9lChoBmgJaA9DCEfn/BQH43BAlIaUUpRoFUvraBZHQJbo84ffXPJ1fZQoaAZoCWgPQwjX+412XCxsQJSGlFKUaBVL82gWR0CW6c5DZ13ddX2UKGgGaAloD0MIDOnwEEaTb0CUhpRSlGgVS/VoFkdAlunciW3Sa3V9lChoBmgJaA9DCGb2eYwyQnBAlIaUUpRoFUvmaBZHQJbqll7MPjJ1fZQoaAZoCWgPQwjFOH8TCjRuQJSGlFKUaBVNOQFoFkdAlutppeu3dHV9lChoBmgJaA9DCJZZhGKrUW1AlIaUUpRoFUv/aBZHQJbrus6q8151fZQoaAZoCWgPQwgp54u9F0coQJSGlFKUaBVLlGgWR0CW7QE/jbSJdX2UKGgGaAloD0MIsMka9RCsbECUhpRSlGgVTVABaBZHQJbvcUIsyzp1fZQoaAZoCWgPQwjsoX2s4FNxQJSGlFKUaBVNEwFoFkdAlvCs2rGR3nV9lChoBmgJaA9DCATG+gYmZW5AlIaUUpRoFU1GAWgWR0CW8QFNcnmadX2UKGgGaAloD0MIArhZvNgbckCUhpRSlGgVTU4BaBZHQJbxSxHG0eF1fZQoaAZoCWgPQwju7CsPUsNtQJSGlFKUaBVL8mgWR0CW8b5hBqsVdX2UKGgGaAloD0MICBwJNNi6cECUhpRSlGgVS9toFkdAlvOjT8YQ8XV9lChoBmgJaA9DCAk02NR5FDzAlIaUUpRoFUuQaBZHQJbzrOlfqot1fZQoaAZoCWgPQwgfZ5qw/Z5vQJSGlFKUaBVL42gWR0CW9A6p5u63dX2UKGgGaAloD0MIKULqdnY/b0CUhpRSlGgVTQcBaBZHQJb0IkJKJ2t1fZQoaAZoCWgPQwhmZmZm5pltQJSGlFKUaBVNwQFoFkdAlvSDVtoBaXV9lChoBmgJaA9DCFhzgGAOMm1AlIaUUpRoFU0jAWgWR0CW9duwX668dX2UKGgGaAloD0MIIv5hS49nbkCUhpRSlGgVS/xoFkdAlvaF3ljmS3V9lChoBmgJaA9DCDLlQ1D1nXBAlIaUUpRoFUv+aBZHQJb25XcQAdZ1fZQoaAZoCWgPQwhXdsHgmuRiQJSGlFKUaBVN6ANoFkdAlvgA6p5u63V9lChoBmgJaA9DCFvSUQ5miWBAlIaUUpRoFU3oA2gWR0CW+LIIF/x2dX2UKGgGaAloD0MI+S6lLhnTbkCUhpRSlGgVS/NoFkdAlvrZ9qk/KXV9lChoBmgJaA9DCA9j0t9LFG5AlIaUUpRoFU0YAWgWR0CW+waAFxGUdX2UKGgGaAloD0MImWVPAhu9cUCUhpRSlGgVTRQBaBZHQJb8C5BkZrJ1fZQoaAZoCWgPQwj52ch1U5VwQJSGlFKUaBVL7GgWR0CW/Gml67d0dX2UKGgGaAloD0MIxciSOVaDcUCUhpRSlGgVS+NoFkdAlvy9OqNp/XV9lChoBmgJaA9DCPZ+ox33PnJAlIaUUpRoFU0YAWgWR0CW/cgccU/OdX2UKGgGaAloD0MIXp7OFaWVbkCUhpRSlGgVS/BoFkdAlv8EXLvCuXV9lChoBmgJaA9DCJlFKLYChXJAlIaUUpRoFU2OAWgWR0CW/4gLJCBxdX2UKGgGaAloD0MIVaTC2IICcUCUhpRSlGgVTSABaBZHQJb/y4J/oaF1fZQoaAZoCWgPQwiaQuc1NqhwQJSGlFKUaBVNFQFoFkdAlwHEcfeUIXV9lChoBmgJaA9DCPzIrUn3DXJAlIaUUpRoFU2ZAWgWR0CXAnWkrPMTdX2UKGgGaAloD0MI/BcIAqTMckCUhpRSlGgVTXEBaBZHQJcDLyc0+C91fZQoaAZoCWgPQwiH3uLh/cRxQJSGlFKUaBVL/mgWR0CXA2sDW9UTdX2UKGgGaAloD0MIX8/XLFdOcECUhpRSlGgVTcQBaBZHQJcECJSBK+V1fZQoaAZoCWgPQwja5PBJJy1xQJSGlFKUaBVNawFoFkdAlwQ1+7UXpHV9lChoBmgJaA9DCNNKIZALsXNAlIaUUpRoFU0nAWgWR0CXBI02tMfzdX2UKGgGaAloD0MI26fjMYNDcUCUhpRSlGgVTRQBaBZHQJcFI+6iCat1fZQoaAZoCWgPQwiuLNFZJkpwQJSGlFKUaBVNEgFoFkdAlwVtFa0Qb3V9lChoBmgJaA9DCHsS2JwDHnFAlIaUUpRoFU0GAWgWR0CXBlcSoOx0dX2UKGgGaAloD0MI9n04SAghb0CUhpRSlGgVTUABaBZHQJcHBroGIKt1fZQoaAZoCWgPQwgaFw6EJOFwQJSGlFKUaBVNEAFoFkdAlwe0dq+JxnV9lChoBmgJaA9DCKWisfb3Z29AlIaUUpRoFU0MAWgWR0CXCDljmSyMdX2UKGgGaAloD0MI6E6w/zqDckCUhpRSlGgVTUEBaBZHQJcJryNGViZ1fZQoaAZoCWgPQwgT0hqDzmhxQJSGlFKUaBVL0WgWR0CXCaqS5iEydX2UKGgGaAloD0MILNUFvIy9cECUhpRSlGgVS/FoFkdAlwnY8yN4q3V9lChoBmgJaA9DCMjO29is73FAlIaUUpRoFU0EAWgWR0CXCdLBsQ/YdX2UKGgGaAloD0MIlBEXgIaFckCUhpRSlGgVS/toFkdAlwq9VFQVK3VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo_lunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4c3381e951bdaa064b1173c35d73b80567a0453b57e1c689e63542da429aaa
|
3 |
+
size 87929
|
ppo_lunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c30d87d1786de13aab3721e4d0c1309c28a427a6648203792fea799bf5fcee5
|
3 |
+
size 43393
|
ppo_lunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (220 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.955095533185, "std_reward": 13.233945900188555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T10:12:45.042404"}
|