|
from typing import Dict, List, Any |
|
import os |
|
from flair.data import Sentence |
|
from flair.models import SequenceTagger |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=str): |
|
|
|
self.tagger = SequenceTagger.load(os.path.join(path,"pytorch_model.bin")) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
|
|
inputs = data.pop("inputs", data) |
|
sentence: Sentence = Sentence(inputs) |
|
|
|
self.tagger.predict(sentence, label_name="predicted") |
|
entities = [] |
|
for span in sentence.get_spans("predicted"): |
|
if len(span.tokens) == 0: |
|
continue |
|
current_entity = { |
|
"entity_group": span.tag, |
|
"word": span.text, |
|
"start": span.tokens[0].start_position, |
|
"end": span.tokens[-1].end_position, |
|
"score": span.score, |
|
} |
|
|
|
entities.append(current_entity) |
|
|
|
return entities |
|
|