Jensen-holm
commited on
Commit
·
8176fea
1
Parent(s):
ea2bb97
copying the src from the github repository
Browse files- src/m_pp.ipynb +634 -0
- src/mens_monte_carlo.ipynb +45 -0
- src/mens_nn.ipynb +613 -0
- src/mens_pre_processing.ipynb +0 -0
src/m_pp.ipynb
ADDED
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"import os\n",
|
12 |
+
"\n",
|
13 |
+
"DATA_DIR = os.path.join(\"..\", \"data\")"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 2,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"name": "stdout",
|
23 |
+
"output_type": "stream",
|
24 |
+
"text": [
|
25 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
26 |
+
"RangeIndex: 1315 entries, 0 to 1314\n",
|
27 |
+
"Data columns (total 38 columns):\n",
|
28 |
+
" # Column Non-Null Count Dtype \n",
|
29 |
+
"--- ------ -------------- ----- \n",
|
30 |
+
" 0 Season 1315 non-null int64 \n",
|
31 |
+
" 1 DayNum 1315 non-null int64 \n",
|
32 |
+
" 2 WTeamID 1315 non-null int64 \n",
|
33 |
+
" 3 WScore 1315 non-null int64 \n",
|
34 |
+
" 4 LTeamID 1315 non-null int64 \n",
|
35 |
+
" 5 LScore 1315 non-null int64 \n",
|
36 |
+
" 6 WLoc 1315 non-null int64 \n",
|
37 |
+
" 7 NumOT 1315 non-null int64 \n",
|
38 |
+
" 8 WFGM 1315 non-null int64 \n",
|
39 |
+
" 9 WFGA 1315 non-null int64 \n",
|
40 |
+
" 10 WFGM3 1315 non-null int64 \n",
|
41 |
+
" 11 WFGA3 1315 non-null int64 \n",
|
42 |
+
" 12 WFTM 1315 non-null int64 \n",
|
43 |
+
" 13 WFTA 1315 non-null int64 \n",
|
44 |
+
" 14 WOR 1315 non-null int64 \n",
|
45 |
+
" 15 WDR 1315 non-null int64 \n",
|
46 |
+
" 16 WAst 1315 non-null int64 \n",
|
47 |
+
" 17 WTO 1315 non-null int64 \n",
|
48 |
+
" 18 WStl 1315 non-null int64 \n",
|
49 |
+
" 19 WBlk 1315 non-null int64 \n",
|
50 |
+
" 20 WPF 1315 non-null int64 \n",
|
51 |
+
" 21 LFGM 1315 non-null int64 \n",
|
52 |
+
" 22 LFGA 1315 non-null int64 \n",
|
53 |
+
" 23 LFGM3 1315 non-null int64 \n",
|
54 |
+
" 24 LFGA3 1315 non-null int64 \n",
|
55 |
+
" 25 LFTM 1315 non-null int64 \n",
|
56 |
+
" 26 LFTA 1315 non-null int64 \n",
|
57 |
+
" 27 LOR 1315 non-null int64 \n",
|
58 |
+
" 28 LDR 1315 non-null int64 \n",
|
59 |
+
" 29 LAst 1315 non-null int64 \n",
|
60 |
+
" 30 LTO 1315 non-null int64 \n",
|
61 |
+
" 31 LStl 1315 non-null int64 \n",
|
62 |
+
" 32 LBlk 1315 non-null int64 \n",
|
63 |
+
" 33 LPF 1315 non-null int64 \n",
|
64 |
+
" 34 GameType 1315 non-null object\n",
|
65 |
+
" 35 WPA 1315 non-null int64 \n",
|
66 |
+
" 36 LPA 1315 non-null int64 \n",
|
67 |
+
" 37 LLoc 1315 non-null int64 \n",
|
68 |
+
"dtypes: int64(37), object(1)\n",
|
69 |
+
"memory usage: 390.5+ KB\n"
|
70 |
+
]
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"source": [
|
74 |
+
"tourney_games_df = pd.read_csv(\n",
|
75 |
+
" os.path.join(DATA_DIR, \"MNCAATourneyDetailedResults.csv\")\n",
|
76 |
+
")\n",
|
77 |
+
"\n",
|
78 |
+
"tourney_games_df[\"GameType\"] = \"tourney\"\n",
|
79 |
+
"\n",
|
80 |
+
"tourney_games_df[\"WPA\"] = tourney_games_df[\"LScore\"]\n",
|
81 |
+
"tourney_games_df[\"LPA\"] = tourney_games_df[\"WScore\"]\n",
|
82 |
+
"\n",
|
83 |
+
"tourney_games_df[\"LLoc\"] = tourney_games_df[\"WLoc\"].apply(lambda x: 0 if x == \"A\" else 1)\n",
|
84 |
+
"tourney_games_df[\"WLoc\"] = tourney_games_df[\"LLoc\"].apply(lambda x: 0 if x == \"A\" else 1)\n",
|
85 |
+
"\n",
|
86 |
+
"tourney_games_df.info()"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 3,
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [
|
94 |
+
{
|
95 |
+
"name": "stdout",
|
96 |
+
"output_type": "stream",
|
97 |
+
"text": [
|
98 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
99 |
+
"RangeIndex: 111817 entries, 0 to 111816\n",
|
100 |
+
"Data columns (total 38 columns):\n",
|
101 |
+
" # Column Non-Null Count Dtype \n",
|
102 |
+
"--- ------ -------------- ----- \n",
|
103 |
+
" 0 Season 111817 non-null int64 \n",
|
104 |
+
" 1 DayNum 111817 non-null int64 \n",
|
105 |
+
" 2 WTeamID 111817 non-null int64 \n",
|
106 |
+
" 3 WScore 111817 non-null int64 \n",
|
107 |
+
" 4 LTeamID 111817 non-null int64 \n",
|
108 |
+
" 5 LScore 111817 non-null int64 \n",
|
109 |
+
" 6 WLoc 111817 non-null int64 \n",
|
110 |
+
" 7 NumOT 111817 non-null int64 \n",
|
111 |
+
" 8 WFGM 111817 non-null int64 \n",
|
112 |
+
" 9 WFGA 111817 non-null int64 \n",
|
113 |
+
" 10 WFGM3 111817 non-null int64 \n",
|
114 |
+
" 11 WFGA3 111817 non-null int64 \n",
|
115 |
+
" 12 WFTM 111817 non-null int64 \n",
|
116 |
+
" 13 WFTA 111817 non-null int64 \n",
|
117 |
+
" 14 WOR 111817 non-null int64 \n",
|
118 |
+
" 15 WDR 111817 non-null int64 \n",
|
119 |
+
" 16 WAst 111817 non-null int64 \n",
|
120 |
+
" 17 WTO 111817 non-null int64 \n",
|
121 |
+
" 18 WStl 111817 non-null int64 \n",
|
122 |
+
" 19 WBlk 111817 non-null int64 \n",
|
123 |
+
" 20 WPF 111817 non-null int64 \n",
|
124 |
+
" 21 LFGM 111817 non-null int64 \n",
|
125 |
+
" 22 LFGA 111817 non-null int64 \n",
|
126 |
+
" 23 LFGM3 111817 non-null int64 \n",
|
127 |
+
" 24 LFGA3 111817 non-null int64 \n",
|
128 |
+
" 25 LFTM 111817 non-null int64 \n",
|
129 |
+
" 26 LFTA 111817 non-null int64 \n",
|
130 |
+
" 27 LOR 111817 non-null int64 \n",
|
131 |
+
" 28 LDR 111817 non-null int64 \n",
|
132 |
+
" 29 LAst 111817 non-null int64 \n",
|
133 |
+
" 30 LTO 111817 non-null int64 \n",
|
134 |
+
" 31 LStl 111817 non-null int64 \n",
|
135 |
+
" 32 LBlk 111817 non-null int64 \n",
|
136 |
+
" 33 LPF 111817 non-null int64 \n",
|
137 |
+
" 34 GameType 111817 non-null object\n",
|
138 |
+
" 35 WPA 111817 non-null int64 \n",
|
139 |
+
" 36 LPA 111817 non-null int64 \n",
|
140 |
+
" 37 LLoc 111817 non-null int64 \n",
|
141 |
+
"dtypes: int64(37), object(1)\n",
|
142 |
+
"memory usage: 32.4+ MB\n"
|
143 |
+
]
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"source": [
|
147 |
+
"reg_games_df = pd.read_csv(\n",
|
148 |
+
" os.path.join(DATA_DIR, \"MRegularSeasonDetailedResults.csv\")\n",
|
149 |
+
")\n",
|
150 |
+
"\n",
|
151 |
+
"reg_games_df[\"GameType\"] = \"reg\"\n",
|
152 |
+
"\n",
|
153 |
+
"# points allowed column\n",
|
154 |
+
"reg_games_df[\"WPA\"] = reg_games_df[\"LScore\"]\n",
|
155 |
+
"reg_games_df[\"LPA\"] = reg_games_df[\"WScore\"]\n",
|
156 |
+
"\n",
|
157 |
+
"# loser location column\n",
|
158 |
+
"reg_games_df[\"LLoc\"] = reg_games_df[\"WLoc\"].apply(lambda x: 0 if x == \"A\" else 1)\n",
|
159 |
+
"reg_games_df[\"WLoc\"] = reg_games_df[\"LLoc\"].apply(lambda x: 0 if x == \"A\" else 1)\n",
|
160 |
+
"\n",
|
161 |
+
"reg_games_df.info()"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 10,
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [],
|
169 |
+
"source": [
|
170 |
+
"\n",
|
171 |
+
"def flatten_multi_idx(df: pd.DataFrame) -> None:\n",
|
172 |
+
" df.columns = [\"_\".join(filter(None, col)) for col in df.columns.to_flat_index()]\n",
|
173 |
+
"\n",
|
174 |
+
"\n",
|
175 |
+
"def summarize_teams(df: pd.DataFrame) -> pd.DataFrame:\n",
|
176 |
+
" other_cols = {\"TeamID\", \"WTeamID\", \"LTeamID\", \"DayNum\", \"Season\", \"GameType\", \"total_games\"}\n",
|
177 |
+
" agg_funcs = [np.sum, np.mean, np.median, np.std, np.min, np.max]\n",
|
178 |
+
" dfs = {}\n",
|
179 |
+
" subsets = [\"W\", \"L\"]\n",
|
180 |
+
" for subset in subsets:\n",
|
181 |
+
" sub = df[[col for col in df.columns if subset in col or col in other_cols]]\n",
|
182 |
+
" agg_df = sub \\\n",
|
183 |
+
" .groupby([f\"{subset}TeamID\", \"Season\"]) \\\n",
|
184 |
+
" .agg({col: agg_funcs for col in sub.columns if col not in other_cols}) \\\n",
|
185 |
+
" .reset_index()\n",
|
186 |
+
" \n",
|
187 |
+
" flatten_multi_idx(agg_df)\n",
|
188 |
+
" agg_df[f\"total{subset}\"] = df \\\n",
|
189 |
+
" .groupby([f\"{subset}TeamID\", \"Season\"])[f\"{subset}TeamID\"] \\\n",
|
190 |
+
" .transform(\"count\")\n",
|
191 |
+
" dfs[subset] = agg_df\n",
|
192 |
+
"\n",
|
193 |
+
" merged = pd.merge(\n",
|
194 |
+
" left=dfs[\"W\"],\n",
|
195 |
+
" right=dfs[\"L\"],\n",
|
196 |
+
" left_on=[\"WTeamID\", \"Season\"],\n",
|
197 |
+
" right_on=[\"LTeamID\", \"Season\"],\n",
|
198 |
+
" )\n",
|
199 |
+
"\n",
|
200 |
+
" merged[\"total_games\"] = merged[\"totalW\"] + merged[\"totalL\"]\n",
|
201 |
+
" merged[\"TeamID\"] = merged[\"WTeamID\"]\n",
|
202 |
+
" merged.drop([\"WTeamID\", \"LTeamID\"], axis=1, inplace=True)\n",
|
203 |
+
" return merged\n",
|
204 |
+
"\n",
|
205 |
+
" # overall_stats_df = merged[[\"TeamID\", \"Season\", \"total_games\", \"WPA_sum\", \"LPA_sum\", \"total_games\"]]\n",
|
206 |
+
" # # Combine stats from games won and games lost\n",
|
207 |
+
" # overall_stats_df[\"TotalPA\"] = overall_stats_df[\"WPA_sum\"] + overall_stats_df[\"LPA_sum\"]\n",
|
208 |
+
" return merged\n"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 11,
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"reg_agg_df = summarize_teams(reg_games_df)"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 12,
|
223 |
+
"metadata": {},
|
224 |
+
"outputs": [
|
225 |
+
{
|
226 |
+
"data": {
|
227 |
+
"text/html": [
|
228 |
+
"<div>\n",
|
229 |
+
"<style scoped>\n",
|
230 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
231 |
+
" vertical-align: middle;\n",
|
232 |
+
" }\n",
|
233 |
+
"\n",
|
234 |
+
" .dataframe tbody tr th {\n",
|
235 |
+
" vertical-align: top;\n",
|
236 |
+
" }\n",
|
237 |
+
"\n",
|
238 |
+
" .dataframe thead th {\n",
|
239 |
+
" text-align: right;\n",
|
240 |
+
" }\n",
|
241 |
+
"</style>\n",
|
242 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
243 |
+
" <thead>\n",
|
244 |
+
" <tr style=\"text-align: right;\">\n",
|
245 |
+
" <th></th>\n",
|
246 |
+
" <th>Season</th>\n",
|
247 |
+
" <th>WScore_sum</th>\n",
|
248 |
+
" <th>WScore_mean</th>\n",
|
249 |
+
" <th>WScore_median</th>\n",
|
250 |
+
" <th>WScore_std</th>\n",
|
251 |
+
" <th>WScore_min</th>\n",
|
252 |
+
" <th>WScore_max</th>\n",
|
253 |
+
" <th>WLoc_sum_x</th>\n",
|
254 |
+
" <th>WLoc_mean_x</th>\n",
|
255 |
+
" <th>WLoc_median_x</th>\n",
|
256 |
+
" <th>...</th>\n",
|
257 |
+
" <th>LPA_max</th>\n",
|
258 |
+
" <th>LLoc_sum</th>\n",
|
259 |
+
" <th>LLoc_mean</th>\n",
|
260 |
+
" <th>LLoc_median</th>\n",
|
261 |
+
" <th>LLoc_std</th>\n",
|
262 |
+
" <th>LLoc_min</th>\n",
|
263 |
+
" <th>LLoc_max</th>\n",
|
264 |
+
" <th>totalL</th>\n",
|
265 |
+
" <th>total_games</th>\n",
|
266 |
+
" <th>TeamID</th>\n",
|
267 |
+
" </tr>\n",
|
268 |
+
" </thead>\n",
|
269 |
+
" <tbody>\n",
|
270 |
+
" <tr>\n",
|
271 |
+
" <th>0</th>\n",
|
272 |
+
" <td>2014</td>\n",
|
273 |
+
" <td>160</td>\n",
|
274 |
+
" <td>80.000000</td>\n",
|
275 |
+
" <td>80.0</td>\n",
|
276 |
+
" <td>9.899495</td>\n",
|
277 |
+
" <td>73</td>\n",
|
278 |
+
" <td>87</td>\n",
|
279 |
+
" <td>2</td>\n",
|
280 |
+
" <td>1.0</td>\n",
|
281 |
+
" <td>1.0</td>\n",
|
282 |
+
" <td>...</td>\n",
|
283 |
+
" <td>103</td>\n",
|
284 |
+
" <td>14</td>\n",
|
285 |
+
" <td>0.736842</td>\n",
|
286 |
+
" <td>1.0</td>\n",
|
287 |
+
" <td>0.452414</td>\n",
|
288 |
+
" <td>0</td>\n",
|
289 |
+
" <td>1</td>\n",
|
290 |
+
" <td>6</td>\n",
|
291 |
+
" <td>23</td>\n",
|
292 |
+
" <td>1101</td>\n",
|
293 |
+
" </tr>\n",
|
294 |
+
" <tr>\n",
|
295 |
+
" <th>1</th>\n",
|
296 |
+
" <td>2015</td>\n",
|
297 |
+
" <td>542</td>\n",
|
298 |
+
" <td>77.428571</td>\n",
|
299 |
+
" <td>72.0</td>\n",
|
300 |
+
" <td>11.012979</td>\n",
|
301 |
+
" <td>65</td>\n",
|
302 |
+
" <td>95</td>\n",
|
303 |
+
" <td>7</td>\n",
|
304 |
+
" <td>1.0</td>\n",
|
305 |
+
" <td>1.0</td>\n",
|
306 |
+
" <td>...</td>\n",
|
307 |
+
" <td>102</td>\n",
|
308 |
+
" <td>15</td>\n",
|
309 |
+
" <td>0.714286</td>\n",
|
310 |
+
" <td>1.0</td>\n",
|
311 |
+
" <td>0.462910</td>\n",
|
312 |
+
" <td>0</td>\n",
|
313 |
+
" <td>1</td>\n",
|
314 |
+
" <td>5</td>\n",
|
315 |
+
" <td>28</td>\n",
|
316 |
+
" <td>1101</td>\n",
|
317 |
+
" </tr>\n",
|
318 |
+
" <tr>\n",
|
319 |
+
" <th>2</th>\n",
|
320 |
+
" <td>2016</td>\n",
|
321 |
+
" <td>704</td>\n",
|
322 |
+
" <td>78.222222</td>\n",
|
323 |
+
" <td>79.0</td>\n",
|
324 |
+
" <td>9.257129</td>\n",
|
325 |
+
" <td>62</td>\n",
|
326 |
+
" <td>91</td>\n",
|
327 |
+
" <td>9</td>\n",
|
328 |
+
" <td>1.0</td>\n",
|
329 |
+
" <td>1.0</td>\n",
|
330 |
+
" <td>...</td>\n",
|
331 |
+
" <td>108</td>\n",
|
332 |
+
" <td>13</td>\n",
|
333 |
+
" <td>0.722222</td>\n",
|
334 |
+
" <td>1.0</td>\n",
|
335 |
+
" <td>0.460889</td>\n",
|
336 |
+
" <td>0</td>\n",
|
337 |
+
" <td>1</td>\n",
|
338 |
+
" <td>15</td>\n",
|
339 |
+
" <td>38</td>\n",
|
340 |
+
" <td>1101</td>\n",
|
341 |
+
" </tr>\n",
|
342 |
+
" <tr>\n",
|
343 |
+
" <th>3</th>\n",
|
344 |
+
" <td>2017</td>\n",
|
345 |
+
" <td>669</td>\n",
|
346 |
+
" <td>74.333333</td>\n",
|
347 |
+
" <td>71.0</td>\n",
|
348 |
+
" <td>7.648529</td>\n",
|
349 |
+
" <td>65</td>\n",
|
350 |
+
" <td>85</td>\n",
|
351 |
+
" <td>9</td>\n",
|
352 |
+
" <td>1.0</td>\n",
|
353 |
+
" <td>1.0</td>\n",
|
354 |
+
" <td>...</td>\n",
|
355 |
+
" <td>89</td>\n",
|
356 |
+
" <td>11</td>\n",
|
357 |
+
" <td>0.687500</td>\n",
|
358 |
+
" <td>1.0</td>\n",
|
359 |
+
" <td>0.478714</td>\n",
|
360 |
+
" <td>0</td>\n",
|
361 |
+
" <td>1</td>\n",
|
362 |
+
" <td>10</td>\n",
|
363 |
+
" <td>27</td>\n",
|
364 |
+
" <td>1101</td>\n",
|
365 |
+
" </tr>\n",
|
366 |
+
" <tr>\n",
|
367 |
+
" <th>4</th>\n",
|
368 |
+
" <td>2018</td>\n",
|
369 |
+
" <td>915</td>\n",
|
370 |
+
" <td>76.250000</td>\n",
|
371 |
+
" <td>77.0</td>\n",
|
372 |
+
" <td>7.484833</td>\n",
|
373 |
+
" <td>62</td>\n",
|
374 |
+
" <td>88</td>\n",
|
375 |
+
" <td>12</td>\n",
|
376 |
+
" <td>1.0</td>\n",
|
377 |
+
" <td>1.0</td>\n",
|
378 |
+
" <td>...</td>\n",
|
379 |
+
" <td>88</td>\n",
|
380 |
+
" <td>9</td>\n",
|
381 |
+
" <td>0.600000</td>\n",
|
382 |
+
" <td>1.0</td>\n",
|
383 |
+
" <td>0.507093</td>\n",
|
384 |
+
" <td>0</td>\n",
|
385 |
+
" <td>1</td>\n",
|
386 |
+
" <td>8</td>\n",
|
387 |
+
" <td>30</td>\n",
|
388 |
+
" <td>1101</td>\n",
|
389 |
+
" </tr>\n",
|
390 |
+
" <tr>\n",
|
391 |
+
" <th>...</th>\n",
|
392 |
+
" <td>...</td>\n",
|
393 |
+
" <td>...</td>\n",
|
394 |
+
" <td>...</td>\n",
|
395 |
+
" <td>...</td>\n",
|
396 |
+
" <td>...</td>\n",
|
397 |
+
" <td>...</td>\n",
|
398 |
+
" <td>...</td>\n",
|
399 |
+
" <td>...</td>\n",
|
400 |
+
" <td>...</td>\n",
|
401 |
+
" <td>...</td>\n",
|
402 |
+
" <td>...</td>\n",
|
403 |
+
" <td>...</td>\n",
|
404 |
+
" <td>...</td>\n",
|
405 |
+
" <td>...</td>\n",
|
406 |
+
" <td>...</td>\n",
|
407 |
+
" <td>...</td>\n",
|
408 |
+
" <td>...</td>\n",
|
409 |
+
" <td>...</td>\n",
|
410 |
+
" <td>...</td>\n",
|
411 |
+
" <td>...</td>\n",
|
412 |
+
" <td>...</td>\n",
|
413 |
+
" </tr>\n",
|
414 |
+
" <tr>\n",
|
415 |
+
" <th>7600</th>\n",
|
416 |
+
" <td>2023</td>\n",
|
417 |
+
" <td>920</td>\n",
|
418 |
+
" <td>70.769231</td>\n",
|
419 |
+
" <td>73.0</td>\n",
|
420 |
+
" <td>9.047595</td>\n",
|
421 |
+
" <td>51</td>\n",
|
422 |
+
" <td>82</td>\n",
|
423 |
+
" <td>13</td>\n",
|
424 |
+
" <td>1.0</td>\n",
|
425 |
+
" <td>1.0</td>\n",
|
426 |
+
" <td>...</td>\n",
|
427 |
+
" <td>102</td>\n",
|
428 |
+
" <td>13</td>\n",
|
429 |
+
" <td>0.764706</td>\n",
|
430 |
+
" <td>1.0</td>\n",
|
431 |
+
" <td>0.437237</td>\n",
|
432 |
+
" <td>0</td>\n",
|
433 |
+
" <td>1</td>\n",
|
434 |
+
" <td>14</td>\n",
|
435 |
+
" <td>29</td>\n",
|
436 |
+
" <td>1476</td>\n",
|
437 |
+
" </tr>\n",
|
438 |
+
" <tr>\n",
|
439 |
+
" <th>7601</th>\n",
|
440 |
+
" <td>2024</td>\n",
|
441 |
+
" <td>128</td>\n",
|
442 |
+
" <td>64.000000</td>\n",
|
443 |
+
" <td>64.0</td>\n",
|
444 |
+
" <td>9.899495</td>\n",
|
445 |
+
" <td>57</td>\n",
|
446 |
+
" <td>71</td>\n",
|
447 |
+
" <td>2</td>\n",
|
448 |
+
" <td>1.0</td>\n",
|
449 |
+
" <td>1.0</td>\n",
|
450 |
+
" <td>...</td>\n",
|
451 |
+
" <td>107</td>\n",
|
452 |
+
" <td>17</td>\n",
|
453 |
+
" <td>0.739130</td>\n",
|
454 |
+
" <td>1.0</td>\n",
|
455 |
+
" <td>0.448978</td>\n",
|
456 |
+
" <td>0</td>\n",
|
457 |
+
" <td>1</td>\n",
|
458 |
+
" <td>5</td>\n",
|
459 |
+
" <td>25</td>\n",
|
460 |
+
" <td>1476</td>\n",
|
461 |
+
" </tr>\n",
|
462 |
+
" <tr>\n",
|
463 |
+
" <th>7602</th>\n",
|
464 |
+
" <td>2023</td>\n",
|
465 |
+
" <td>864</td>\n",
|
466 |
+
" <td>72.000000</td>\n",
|
467 |
+
" <td>74.0</td>\n",
|
468 |
+
" <td>10.206950</td>\n",
|
469 |
+
" <td>53</td>\n",
|
470 |
+
" <td>84</td>\n",
|
471 |
+
" <td>12</td>\n",
|
472 |
+
" <td>1.0</td>\n",
|
473 |
+
" <td>1.0</td>\n",
|
474 |
+
" <td>...</td>\n",
|
475 |
+
" <td>97</td>\n",
|
476 |
+
" <td>15</td>\n",
|
477 |
+
" <td>0.750000</td>\n",
|
478 |
+
" <td>1.0</td>\n",
|
479 |
+
" <td>0.444262</td>\n",
|
480 |
+
" <td>0</td>\n",
|
481 |
+
" <td>1</td>\n",
|
482 |
+
" <td>20</td>\n",
|
483 |
+
" <td>34</td>\n",
|
484 |
+
" <td>1477</td>\n",
|
485 |
+
" </tr>\n",
|
486 |
+
" <tr>\n",
|
487 |
+
" <th>7603</th>\n",
|
488 |
+
" <td>2024</td>\n",
|
489 |
+
" <td>483</td>\n",
|
490 |
+
" <td>80.500000</td>\n",
|
491 |
+
" <td>80.0</td>\n",
|
492 |
+
" <td>17.683325</td>\n",
|
493 |
+
" <td>57</td>\n",
|
494 |
+
" <td>101</td>\n",
|
495 |
+
" <td>6</td>\n",
|
496 |
+
" <td>1.0</td>\n",
|
497 |
+
" <td>1.0</td>\n",
|
498 |
+
" <td>...</td>\n",
|
499 |
+
" <td>90</td>\n",
|
500 |
+
" <td>10</td>\n",
|
501 |
+
" <td>0.625000</td>\n",
|
502 |
+
" <td>1.0</td>\n",
|
503 |
+
" <td>0.500000</td>\n",
|
504 |
+
" <td>0</td>\n",
|
505 |
+
" <td>1</td>\n",
|
506 |
+
" <td>9</td>\n",
|
507 |
+
" <td>33</td>\n",
|
508 |
+
" <td>1477</td>\n",
|
509 |
+
" </tr>\n",
|
510 |
+
" <tr>\n",
|
511 |
+
" <th>7604</th>\n",
|
512 |
+
" <td>2024</td>\n",
|
513 |
+
" <td>578</td>\n",
|
514 |
+
" <td>82.571429</td>\n",
|
515 |
+
" <td>80.0</td>\n",
|
516 |
+
" <td>7.345228</td>\n",
|
517 |
+
" <td>74</td>\n",
|
518 |
+
" <td>94</td>\n",
|
519 |
+
" <td>7</td>\n",
|
520 |
+
" <td>1.0</td>\n",
|
521 |
+
" <td>1.0</td>\n",
|
522 |
+
" <td>...</td>\n",
|
523 |
+
" <td>96</td>\n",
|
524 |
+
" <td>12</td>\n",
|
525 |
+
" <td>0.857143</td>\n",
|
526 |
+
" <td>1.0</td>\n",
|
527 |
+
" <td>0.363137</td>\n",
|
528 |
+
" <td>0</td>\n",
|
529 |
+
" <td>1</td>\n",
|
530 |
+
" <td>12</td>\n",
|
531 |
+
" <td>26</td>\n",
|
532 |
+
" <td>1478</td>\n",
|
533 |
+
" </tr>\n",
|
534 |
+
" </tbody>\n",
|
535 |
+
"</table>\n",
|
536 |
+
"<p>7605 rows × 203 columns</p>\n",
|
537 |
+
"</div>"
|
538 |
+
],
|
539 |
+
"text/plain": [
|
540 |
+
" Season WScore_sum WScore_mean WScore_median WScore_std WScore_min \\\n",
|
541 |
+
"0 2014 160 80.000000 80.0 9.899495 73 \n",
|
542 |
+
"1 2015 542 77.428571 72.0 11.012979 65 \n",
|
543 |
+
"2 2016 704 78.222222 79.0 9.257129 62 \n",
|
544 |
+
"3 2017 669 74.333333 71.0 7.648529 65 \n",
|
545 |
+
"4 2018 915 76.250000 77.0 7.484833 62 \n",
|
546 |
+
"... ... ... ... ... ... ... \n",
|
547 |
+
"7600 2023 920 70.769231 73.0 9.047595 51 \n",
|
548 |
+
"7601 2024 128 64.000000 64.0 9.899495 57 \n",
|
549 |
+
"7602 2023 864 72.000000 74.0 10.206950 53 \n",
|
550 |
+
"7603 2024 483 80.500000 80.0 17.683325 57 \n",
|
551 |
+
"7604 2024 578 82.571429 80.0 7.345228 74 \n",
|
552 |
+
"\n",
|
553 |
+
" WScore_max WLoc_sum_x WLoc_mean_x WLoc_median_x ... LPA_max \\\n",
|
554 |
+
"0 87 2 1.0 1.0 ... 103 \n",
|
555 |
+
"1 95 7 1.0 1.0 ... 102 \n",
|
556 |
+
"2 91 9 1.0 1.0 ... 108 \n",
|
557 |
+
"3 85 9 1.0 1.0 ... 89 \n",
|
558 |
+
"4 88 12 1.0 1.0 ... 88 \n",
|
559 |
+
"... ... ... ... ... ... ... \n",
|
560 |
+
"7600 82 13 1.0 1.0 ... 102 \n",
|
561 |
+
"7601 71 2 1.0 1.0 ... 107 \n",
|
562 |
+
"7602 84 12 1.0 1.0 ... 97 \n",
|
563 |
+
"7603 101 6 1.0 1.0 ... 90 \n",
|
564 |
+
"7604 94 7 1.0 1.0 ... 96 \n",
|
565 |
+
"\n",
|
566 |
+
" LLoc_sum LLoc_mean LLoc_median LLoc_std LLoc_min LLoc_max totalL \\\n",
|
567 |
+
"0 14 0.736842 1.0 0.452414 0 1 6 \n",
|
568 |
+
"1 15 0.714286 1.0 0.462910 0 1 5 \n",
|
569 |
+
"2 13 0.722222 1.0 0.460889 0 1 15 \n",
|
570 |
+
"3 11 0.687500 1.0 0.478714 0 1 10 \n",
|
571 |
+
"4 9 0.600000 1.0 0.507093 0 1 8 \n",
|
572 |
+
"... ... ... ... ... ... ... ... \n",
|
573 |
+
"7600 13 0.764706 1.0 0.437237 0 1 14 \n",
|
574 |
+
"7601 17 0.739130 1.0 0.448978 0 1 5 \n",
|
575 |
+
"7602 15 0.750000 1.0 0.444262 0 1 20 \n",
|
576 |
+
"7603 10 0.625000 1.0 0.500000 0 1 9 \n",
|
577 |
+
"7604 12 0.857143 1.0 0.363137 0 1 12 \n",
|
578 |
+
"\n",
|
579 |
+
" total_games TeamID \n",
|
580 |
+
"0 23 1101 \n",
|
581 |
+
"1 28 1101 \n",
|
582 |
+
"2 38 1101 \n",
|
583 |
+
"3 27 1101 \n",
|
584 |
+
"4 30 1101 \n",
|
585 |
+
"... ... ... \n",
|
586 |
+
"7600 29 1476 \n",
|
587 |
+
"7601 25 1476 \n",
|
588 |
+
"7602 34 1477 \n",
|
589 |
+
"7603 33 1477 \n",
|
590 |
+
"7604 26 1478 \n",
|
591 |
+
"\n",
|
592 |
+
"[7605 rows x 203 columns]"
|
593 |
+
]
|
594 |
+
},
|
595 |
+
"execution_count": 12,
|
596 |
+
"metadata": {},
|
597 |
+
"output_type": "execute_result"
|
598 |
+
}
|
599 |
+
],
|
600 |
+
"source": [
|
601 |
+
"# combine the winning and losing stats so that we have overall game stats\n",
|
602 |
+
"reg_agg_df\n"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"cell_type": "code",
|
607 |
+
"execution_count": null,
|
608 |
+
"metadata": {},
|
609 |
+
"outputs": [],
|
610 |
+
"source": []
|
611 |
+
}
|
612 |
+
],
|
613 |
+
"metadata": {
|
614 |
+
"kernelspec": {
|
615 |
+
"display_name": "Python 3 (ipykernel)",
|
616 |
+
"language": "python",
|
617 |
+
"name": "python3"
|
618 |
+
},
|
619 |
+
"language_info": {
|
620 |
+
"codemirror_mode": {
|
621 |
+
"name": "ipython",
|
622 |
+
"version": 3
|
623 |
+
},
|
624 |
+
"file_extension": ".py",
|
625 |
+
"mimetype": "text/x-python",
|
626 |
+
"name": "python",
|
627 |
+
"nbconvert_exporter": "python",
|
628 |
+
"pygments_lexer": "ipython3",
|
629 |
+
"version": "3.11.7"
|
630 |
+
}
|
631 |
+
},
|
632 |
+
"nbformat": 4,
|
633 |
+
"nbformat_minor": 2
|
634 |
+
}
|
src/mens_monte_carlo.ipynb
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"import os\n",
|
12 |
+
"\n",
|
13 |
+
"DATA_DIR = os.path.join(\"..\", \"data\")"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": null,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": []
|
22 |
+
}
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"kernelspec": {
|
26 |
+
"display_name": "Python 3",
|
27 |
+
"language": "python",
|
28 |
+
"name": "python3"
|
29 |
+
},
|
30 |
+
"language_info": {
|
31 |
+
"codemirror_mode": {
|
32 |
+
"name": "ipython",
|
33 |
+
"version": 3
|
34 |
+
},
|
35 |
+
"file_extension": ".py",
|
36 |
+
"mimetype": "text/x-python",
|
37 |
+
"name": "python",
|
38 |
+
"nbconvert_exporter": "python",
|
39 |
+
"pygments_lexer": "ipython3",
|
40 |
+
"version": "3.11.7"
|
41 |
+
}
|
42 |
+
},
|
43 |
+
"nbformat": 4,
|
44 |
+
"nbformat_minor": 2
|
45 |
+
}
|
src/mens_nn.ipynb
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "998997dd",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Modeling NCAA Tournament Basketball games\n",
|
9 |
+
"\n",
|
10 |
+
"The thought process is to build a neural network that can predict a teams tournament <br>\n",
|
11 |
+
"performance on a per game basis. Then we can use these predicted metrics to run a monte carlo <br>\n",
|
12 |
+
"style simulation and select whichever team is most likley to win. <br>"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 1,
|
18 |
+
"id": "f0ec30d9",
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"from sklearn.model_selection import train_test_split\n",
|
23 |
+
"import torch\n",
|
24 |
+
"import torch.nn as nn\n",
|
25 |
+
"import torch.optim as optim\n",
|
26 |
+
"\n",
|
27 |
+
"import pandas as pd\n",
|
28 |
+
"import os\n",
|
29 |
+
"\n",
|
30 |
+
"\n",
|
31 |
+
"# check to make sure if there are any gpu's available for faster training\n",
|
32 |
+
"def get_device() -> str:\n",
|
33 |
+
" if torch.cuda.is_available():\n",
|
34 |
+
" return \"cuda\"\n",
|
35 |
+
" if torch.backends.mps.is_available():\n",
|
36 |
+
" return \"mps\" \n",
|
37 |
+
" return \"cpu\"\n",
|
38 |
+
"\n",
|
39 |
+
"# mps not working correctly on my m1 macbook air so just doing cpu for now\n",
|
40 |
+
"# DEVICE = get_device()\n",
|
41 |
+
"DEVICE = \"cpu\"\n",
|
42 |
+
"\n",
|
43 |
+
"# universal data directory for this project\n",
|
44 |
+
"DATA_DIR = os.path.join(\"..\", \"data\") "
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": 2,
|
50 |
+
"id": "b820f210",
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [
|
53 |
+
{
|
54 |
+
"name": "stdout",
|
55 |
+
"output_type": "stream",
|
56 |
+
"text": [
|
57 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
58 |
+
"RangeIndex: 655 entries, 0 to 654\n",
|
59 |
+
"Columns: 1068 entries, Unnamed: 0 to Seed\n",
|
60 |
+
"dtypes: float64(672), int64(388), object(8)\n",
|
61 |
+
"memory usage: 5.3+ MB\n"
|
62 |
+
]
|
63 |
+
}
|
64 |
+
],
|
65 |
+
"source": [
|
66 |
+
"all_games_df = pd.read_csv(os.path.join(DATA_DIR, \"MDetailedAggregatedGames.csv\"))\n",
|
67 |
+
"all_games_df.info()"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 3,
|
73 |
+
"id": "02ebc500",
|
74 |
+
"metadata": {},
|
75 |
+
"outputs": [
|
76 |
+
{
|
77 |
+
"data": {
|
78 |
+
"text/html": [
|
79 |
+
"<div>\n",
|
80 |
+
"<style scoped>\n",
|
81 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
82 |
+
" vertical-align: middle;\n",
|
83 |
+
" }\n",
|
84 |
+
"\n",
|
85 |
+
" .dataframe tbody tr th {\n",
|
86 |
+
" vertical-align: top;\n",
|
87 |
+
" }\n",
|
88 |
+
"\n",
|
89 |
+
" .dataframe thead th {\n",
|
90 |
+
" text-align: right;\n",
|
91 |
+
" }\n",
|
92 |
+
"</style>\n",
|
93 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
94 |
+
" <thead>\n",
|
95 |
+
" <tr style=\"text-align: right;\">\n",
|
96 |
+
" <th></th>\n",
|
97 |
+
" <th>Unnamed: 0</th>\n",
|
98 |
+
" <th>Season</th>\n",
|
99 |
+
" <th>DayNum</th>\n",
|
100 |
+
" <th>WTeamID</th>\n",
|
101 |
+
" <th>WScore</th>\n",
|
102 |
+
" <th>LTeamID</th>\n",
|
103 |
+
" <th>LScore</th>\n",
|
104 |
+
" <th>WLoc</th>\n",
|
105 |
+
" <th>NumOT</th>\n",
|
106 |
+
" <th>WFGM</th>\n",
|
107 |
+
" <th>...</th>\n",
|
108 |
+
" <th>tourney_DR_max</th>\n",
|
109 |
+
" <th>tourney_DR_mean</th>\n",
|
110 |
+
" <th>tourney_DR_median</th>\n",
|
111 |
+
" <th>tourney_DR_std</th>\n",
|
112 |
+
" <th>tourney_DR_sum</th>\n",
|
113 |
+
" <th>ConfAbbrev</th>\n",
|
114 |
+
" <th>TeamName</th>\n",
|
115 |
+
" <th>FirstD1Season</th>\n",
|
116 |
+
" <th>LastD1Season</th>\n",
|
117 |
+
" <th>Seed</th>\n",
|
118 |
+
" </tr>\n",
|
119 |
+
" </thead>\n",
|
120 |
+
" <tbody>\n",
|
121 |
+
" <tr>\n",
|
122 |
+
" <th>0</th>\n",
|
123 |
+
" <td>0</td>\n",
|
124 |
+
" <td>2003</td>\n",
|
125 |
+
" <td>40</td>\n",
|
126 |
+
" <td>1266</td>\n",
|
127 |
+
" <td>63</td>\n",
|
128 |
+
" <td>1458</td>\n",
|
129 |
+
" <td>54</td>\n",
|
130 |
+
" <td>H</td>\n",
|
131 |
+
" <td>0</td>\n",
|
132 |
+
" <td>24</td>\n",
|
133 |
+
" <td>...</td>\n",
|
134 |
+
" <td>21.666667</td>\n",
|
135 |
+
" <td>21.666667</td>\n",
|
136 |
+
" <td>21.666667</td>\n",
|
137 |
+
" <td>21.666667</td>\n",
|
138 |
+
" <td>21.666667</td>\n",
|
139 |
+
" <td>big_ten</td>\n",
|
140 |
+
" <td>Wisconsin</td>\n",
|
141 |
+
" <td>1985</td>\n",
|
142 |
+
" <td>2024</td>\n",
|
143 |
+
" <td>Y05</td>\n",
|
144 |
+
" </tr>\n",
|
145 |
+
" <tr>\n",
|
146 |
+
" <th>1</th>\n",
|
147 |
+
" <td>5</td>\n",
|
148 |
+
" <td>2003</td>\n",
|
149 |
+
" <td>97</td>\n",
|
150 |
+
" <td>1266</td>\n",
|
151 |
+
" <td>68</td>\n",
|
152 |
+
" <td>1448</td>\n",
|
153 |
+
" <td>61</td>\n",
|
154 |
+
" <td>H</td>\n",
|
155 |
+
" <td>0</td>\n",
|
156 |
+
" <td>21</td>\n",
|
157 |
+
" <td>...</td>\n",
|
158 |
+
" <td>26.000000</td>\n",
|
159 |
+
" <td>26.000000</td>\n",
|
160 |
+
" <td>26.000000</td>\n",
|
161 |
+
" <td>26.000000</td>\n",
|
162 |
+
" <td>26.000000</td>\n",
|
163 |
+
" <td>acc</td>\n",
|
164 |
+
" <td>Wake Forest</td>\n",
|
165 |
+
" <td>1985</td>\n",
|
166 |
+
" <td>2024</td>\n",
|
167 |
+
" <td>W02</td>\n",
|
168 |
+
" </tr>\n",
|
169 |
+
" <tr>\n",
|
170 |
+
" <th>2</th>\n",
|
171 |
+
" <td>9</td>\n",
|
172 |
+
" <td>2003</td>\n",
|
173 |
+
" <td>115</td>\n",
|
174 |
+
" <td>1266</td>\n",
|
175 |
+
" <td>78</td>\n",
|
176 |
+
" <td>1257</td>\n",
|
177 |
+
" <td>73</td>\n",
|
178 |
+
" <td>A</td>\n",
|
179 |
+
" <td>0</td>\n",
|
180 |
+
" <td>26</td>\n",
|
181 |
+
" <td>...</td>\n",
|
182 |
+
" <td>24.000000</td>\n",
|
183 |
+
" <td>24.000000</td>\n",
|
184 |
+
" <td>24.000000</td>\n",
|
185 |
+
" <td>24.000000</td>\n",
|
186 |
+
" <td>24.000000</td>\n",
|
187 |
+
" <td>cusa</td>\n",
|
188 |
+
" <td>Louisville</td>\n",
|
189 |
+
" <td>1985</td>\n",
|
190 |
+
" <td>2024</td>\n",
|
191 |
+
" <td>W04</td>\n",
|
192 |
+
" </tr>\n",
|
193 |
+
" <tr>\n",
|
194 |
+
" <th>3</th>\n",
|
195 |
+
" <td>12</td>\n",
|
196 |
+
" <td>2003</td>\n",
|
197 |
+
" <td>138</td>\n",
|
198 |
+
" <td>1266</td>\n",
|
199 |
+
" <td>101</td>\n",
|
200 |
+
" <td>1281</td>\n",
|
201 |
+
" <td>92</td>\n",
|
202 |
+
" <td>N</td>\n",
|
203 |
+
" <td>1</td>\n",
|
204 |
+
" <td>35</td>\n",
|
205 |
+
" <td>...</td>\n",
|
206 |
+
" <td>26.000000</td>\n",
|
207 |
+
" <td>26.000000</td>\n",
|
208 |
+
" <td>26.000000</td>\n",
|
209 |
+
" <td>26.000000</td>\n",
|
210 |
+
" <td>26.000000</td>\n",
|
211 |
+
" <td>big_twelve</td>\n",
|
212 |
+
" <td>Missouri</td>\n",
|
213 |
+
" <td>1985</td>\n",
|
214 |
+
" <td>2024</td>\n",
|
215 |
+
" <td>Y06</td>\n",
|
216 |
+
" </tr>\n",
|
217 |
+
" <tr>\n",
|
218 |
+
" <th>4</th>\n",
|
219 |
+
" <td>19</td>\n",
|
220 |
+
" <td>2003</td>\n",
|
221 |
+
" <td>143</td>\n",
|
222 |
+
" <td>1266</td>\n",
|
223 |
+
" <td>77</td>\n",
|
224 |
+
" <td>1338</td>\n",
|
225 |
+
" <td>74</td>\n",
|
226 |
+
" <td>N</td>\n",
|
227 |
+
" <td>0</td>\n",
|
228 |
+
" <td>28</td>\n",
|
229 |
+
" <td>...</td>\n",
|
230 |
+
" <td>21.333333</td>\n",
|
231 |
+
" <td>21.333333</td>\n",
|
232 |
+
" <td>21.333333</td>\n",
|
233 |
+
" <td>21.333333</td>\n",
|
234 |
+
" <td>21.333333</td>\n",
|
235 |
+
" <td>big_east</td>\n",
|
236 |
+
" <td>Pittsburgh</td>\n",
|
237 |
+
" <td>1985</td>\n",
|
238 |
+
" <td>2024</td>\n",
|
239 |
+
" <td>Y02</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" </tbody>\n",
|
242 |
+
"</table>\n",
|
243 |
+
"<p>5 rows × 1068 columns</p>\n",
|
244 |
+
"</div>"
|
245 |
+
],
|
246 |
+
"text/plain": [
|
247 |
+
" Unnamed: 0 Season DayNum WTeamID WScore LTeamID LScore WLoc NumOT \\\n",
|
248 |
+
"0 0 2003 40 1266 63 1458 54 H 0 \n",
|
249 |
+
"1 5 2003 97 1266 68 1448 61 H 0 \n",
|
250 |
+
"2 9 2003 115 1266 78 1257 73 A 0 \n",
|
251 |
+
"3 12 2003 138 1266 101 1281 92 N 1 \n",
|
252 |
+
"4 19 2003 143 1266 77 1338 74 N 0 \n",
|
253 |
+
"\n",
|
254 |
+
" WFGM ... tourney_DR_max tourney_DR_mean tourney_DR_median \\\n",
|
255 |
+
"0 24 ... 21.666667 21.666667 21.666667 \n",
|
256 |
+
"1 21 ... 26.000000 26.000000 26.000000 \n",
|
257 |
+
"2 26 ... 24.000000 24.000000 24.000000 \n",
|
258 |
+
"3 35 ... 26.000000 26.000000 26.000000 \n",
|
259 |
+
"4 28 ... 21.333333 21.333333 21.333333 \n",
|
260 |
+
"\n",
|
261 |
+
" tourney_DR_std tourney_DR_sum ConfAbbrev TeamName FirstD1Season \\\n",
|
262 |
+
"0 21.666667 21.666667 big_ten Wisconsin 1985 \n",
|
263 |
+
"1 26.000000 26.000000 acc Wake Forest 1985 \n",
|
264 |
+
"2 24.000000 24.000000 cusa Louisville 1985 \n",
|
265 |
+
"3 26.000000 26.000000 big_twelve Missouri 1985 \n",
|
266 |
+
"4 21.333333 21.333333 big_east Pittsburgh 1985 \n",
|
267 |
+
"\n",
|
268 |
+
" LastD1Season Seed \n",
|
269 |
+
"0 2024 Y05 \n",
|
270 |
+
"1 2024 W02 \n",
|
271 |
+
"2 2024 W04 \n",
|
272 |
+
"3 2024 Y06 \n",
|
273 |
+
"4 2024 Y02 \n",
|
274 |
+
"\n",
|
275 |
+
"[5 rows x 1068 columns]"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
"execution_count": 3,
|
279 |
+
"metadata": {},
|
280 |
+
"output_type": "execute_result"
|
281 |
+
}
|
282 |
+
],
|
283 |
+
"source": [
|
284 |
+
"all_games_df.head()"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "markdown",
|
289 |
+
"id": "58e4fee8",
|
290 |
+
"metadata": {},
|
291 |
+
"source": [
|
292 |
+
"# Feature Selection"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 4,
|
298 |
+
"id": "1251726e",
|
299 |
+
"metadata": {},
|
300 |
+
"outputs": [],
|
301 |
+
"source": [
|
302 |
+
"target_df = all_games_df[[\"tourney_Score_mean\", \"tourney_Score_std\", \"tourney_Score_max\", \"tourney_Score_min\"]]\n",
|
303 |
+
"\n",
|
304 |
+
"features_df = all_games_df[[col for col in all_games_df if col.startswith(\"reg\") and \"_W\" not in col and \"_L\" not in col and \"sum\" not in col]]\n",
|
305 |
+
"# features_df = features_df.select_dtypes(include=\"number\")\n",
|
306 |
+
"\n",
|
307 |
+
"# split data into training and testing data sets\n",
|
308 |
+
"X_train, X_test, y_train, y_test = train_test_split(\n",
|
309 |
+
" features_df.astype(float),\n",
|
310 |
+
" target_df.astype(float),\n",
|
311 |
+
" train_size=0.8,\n",
|
312 |
+
" random_state=8,\n",
|
313 |
+
")"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": 5,
|
319 |
+
"id": "28478189",
|
320 |
+
"metadata": {},
|
321 |
+
"outputs": [
|
322 |
+
{
|
323 |
+
"name": "stdout",
|
324 |
+
"output_type": "stream",
|
325 |
+
"text": [
|
326 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
327 |
+
"Int64Index: 524 entries, 5 to 451\n",
|
328 |
+
"Data columns (total 71 columns):\n",
|
329 |
+
" # Column Non-Null Count Dtype \n",
|
330 |
+
"--- ------ -------------- ----- \n",
|
331 |
+
" 0 reg_Games 524 non-null float64\n",
|
332 |
+
" 1 reg_Score_min 524 non-null float64\n",
|
333 |
+
" 2 reg_Score_max 524 non-null float64\n",
|
334 |
+
" 3 reg_Score_mean 524 non-null float64\n",
|
335 |
+
" 4 reg_Score_median 524 non-null float64\n",
|
336 |
+
" 5 reg_Score_std 524 non-null float64\n",
|
337 |
+
" 6 reg_FGM_min 524 non-null float64\n",
|
338 |
+
" 7 reg_FGM_max 524 non-null float64\n",
|
339 |
+
" 8 reg_FGM_mean 524 non-null float64\n",
|
340 |
+
" 9 reg_FGM_median 524 non-null float64\n",
|
341 |
+
" 10 reg_FGM_std 524 non-null float64\n",
|
342 |
+
" 11 reg_FGA_min 524 non-null float64\n",
|
343 |
+
" 12 reg_FGA_max 524 non-null float64\n",
|
344 |
+
" 13 reg_FGA_mean 524 non-null float64\n",
|
345 |
+
" 14 reg_FGA_median 524 non-null float64\n",
|
346 |
+
" 15 reg_FGA_std 524 non-null float64\n",
|
347 |
+
" 16 reg_FTM_min 524 non-null float64\n",
|
348 |
+
" 17 reg_FTM_max 524 non-null float64\n",
|
349 |
+
" 18 reg_FTM_mean 524 non-null float64\n",
|
350 |
+
" 19 reg_FTM_median 524 non-null float64\n",
|
351 |
+
" 20 reg_FTM_std 524 non-null float64\n",
|
352 |
+
" 21 reg_FTA_min 524 non-null float64\n",
|
353 |
+
" 22 reg_FTA_max 524 non-null float64\n",
|
354 |
+
" 23 reg_FTA_mean 524 non-null float64\n",
|
355 |
+
" 24 reg_FTA_median 524 non-null float64\n",
|
356 |
+
" 25 reg_FTA_std 524 non-null float64\n",
|
357 |
+
" 26 reg_Ast_min 524 non-null float64\n",
|
358 |
+
" 27 reg_Ast_max 524 non-null float64\n",
|
359 |
+
" 28 reg_Ast_mean 524 non-null float64\n",
|
360 |
+
" 29 reg_Ast_median 524 non-null float64\n",
|
361 |
+
" 30 reg_Ast_std 524 non-null float64\n",
|
362 |
+
" 31 reg_Blk_min 524 non-null float64\n",
|
363 |
+
" 32 reg_Blk_max 524 non-null float64\n",
|
364 |
+
" 33 reg_Blk_mean 524 non-null float64\n",
|
365 |
+
" 34 reg_Blk_median 524 non-null float64\n",
|
366 |
+
" 35 reg_Blk_std 524 non-null float64\n",
|
367 |
+
" 36 reg_PF_min 524 non-null float64\n",
|
368 |
+
" 37 reg_PF_max 524 non-null float64\n",
|
369 |
+
" 38 reg_PF_mean 524 non-null float64\n",
|
370 |
+
" 39 reg_PF_median 524 non-null float64\n",
|
371 |
+
" 40 reg_PF_std 524 non-null float64\n",
|
372 |
+
" 41 reg_Stl_min 524 non-null float64\n",
|
373 |
+
" 42 reg_Stl_max 524 non-null float64\n",
|
374 |
+
" 43 reg_Stl_mean 524 non-null float64\n",
|
375 |
+
" 44 reg_Stl_median 524 non-null float64\n",
|
376 |
+
" 45 reg_Stl_std 524 non-null float64\n",
|
377 |
+
" 46 reg_TO_min 524 non-null float64\n",
|
378 |
+
" 47 reg_TO_max 524 non-null float64\n",
|
379 |
+
" 48 reg_TO_mean 524 non-null float64\n",
|
380 |
+
" 49 reg_TO_median 524 non-null float64\n",
|
381 |
+
" 50 reg_TO_std 524 non-null float64\n",
|
382 |
+
" 51 reg_FGM3_min 524 non-null float64\n",
|
383 |
+
" 52 reg_FGM3_max 524 non-null float64\n",
|
384 |
+
" 53 reg_FGM3_mean 524 non-null float64\n",
|
385 |
+
" 54 reg_FGM3_median 524 non-null float64\n",
|
386 |
+
" 55 reg_FGM3_std 524 non-null float64\n",
|
387 |
+
" 56 reg_FGA3_min 524 non-null float64\n",
|
388 |
+
" 57 reg_FGA3_max 524 non-null float64\n",
|
389 |
+
" 58 reg_FGA3_mean 524 non-null float64\n",
|
390 |
+
" 59 reg_FGA3_median 524 non-null float64\n",
|
391 |
+
" 60 reg_FGA3_std 524 non-null float64\n",
|
392 |
+
" 61 reg_OR_min 524 non-null float64\n",
|
393 |
+
" 62 reg_OR_max 524 non-null float64\n",
|
394 |
+
" 63 reg_OR_mean 524 non-null float64\n",
|
395 |
+
" 64 reg_OR_median 524 non-null float64\n",
|
396 |
+
" 65 reg_OR_std 524 non-null float64\n",
|
397 |
+
" 66 reg_DR_min 524 non-null float64\n",
|
398 |
+
" 67 reg_DR_max 524 non-null float64\n",
|
399 |
+
" 68 reg_DR_mean 524 non-null float64\n",
|
400 |
+
" 69 reg_DR_median 524 non-null float64\n",
|
401 |
+
" 70 reg_DR_std 524 non-null float64\n",
|
402 |
+
"dtypes: float64(71)\n",
|
403 |
+
"memory usage: 294.8 KB\n"
|
404 |
+
]
|
405 |
+
}
|
406 |
+
],
|
407 |
+
"source": [
|
408 |
+
"X_train.info()"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": 6,
|
414 |
+
"id": "04f4a0a6",
|
415 |
+
"metadata": {},
|
416 |
+
"outputs": [
|
417 |
+
{
|
418 |
+
"name": "stdout",
|
419 |
+
"output_type": "stream",
|
420 |
+
"text": [
|
421 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
422 |
+
"Int64Index: 524 entries, 5 to 451\n",
|
423 |
+
"Data columns (total 4 columns):\n",
|
424 |
+
" # Column Non-Null Count Dtype \n",
|
425 |
+
"--- ------ -------------- ----- \n",
|
426 |
+
" 0 tourney_Score_mean 524 non-null float64\n",
|
427 |
+
" 1 tourney_Score_std 524 non-null float64\n",
|
428 |
+
" 2 tourney_Score_max 524 non-null float64\n",
|
429 |
+
" 3 tourney_Score_min 524 non-null float64\n",
|
430 |
+
"dtypes: float64(4)\n",
|
431 |
+
"memory usage: 20.5 KB\n"
|
432 |
+
]
|
433 |
+
}
|
434 |
+
],
|
435 |
+
"source": [
|
436 |
+
"y_train.info()"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"execution_count": 7,
|
442 |
+
"id": "40094cd0",
|
443 |
+
"metadata": {},
|
444 |
+
"outputs": [],
|
445 |
+
"source": [
|
446 |
+
"# convert all datasets into tensors and register them \n",
|
447 |
+
"# with the device (cuda, mps or cpu)\n",
|
448 |
+
"X_trainT = torch.Tensor(\n",
|
449 |
+
" X_train.values,\n",
|
450 |
+
").float().to(DEVICE)\n",
|
451 |
+
"\n",
|
452 |
+
"X_testT = torch.Tensor(\n",
|
453 |
+
" X_test.values,\n",
|
454 |
+
").float().to(DEVICE)\n",
|
455 |
+
"\n",
|
456 |
+
"y_trainT = torch.Tensor(\n",
|
457 |
+
" y_train.values,\n",
|
458 |
+
").float().to(DEVICE)\n",
|
459 |
+
"\n",
|
460 |
+
"y_testT = torch.Tensor(\n",
|
461 |
+
" y_test.values,\n",
|
462 |
+
").float().to(DEVICE)"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "markdown",
|
467 |
+
"id": "20bceb9a",
|
468 |
+
"metadata": {},
|
469 |
+
"source": [
|
470 |
+
"# Building Neural Network"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": 8,
|
476 |
+
"id": "7b0573ee",
|
477 |
+
"metadata": {},
|
478 |
+
"outputs": [],
|
479 |
+
"source": [
|
480 |
+
"num_features = len(X_train.columns)\n",
|
481 |
+
"\n",
|
482 |
+
"class MadnessNN(nn.Module):\n",
|
483 |
+
" def __init__(self) -> None:\n",
|
484 |
+
" super().__init__()\n",
|
485 |
+
" self.input_layer = nn.Linear(num_features, 64)\n",
|
486 |
+
" self.activation_func = nn.ReLU()\n",
|
487 |
+
" self.layer1 = nn.Linear(64, 32)\n",
|
488 |
+
" self.layer2 = nn.Linear(32, 16)\n",
|
489 |
+
" self.layer3 = nn.Linear(16, 8)\n",
|
490 |
+
" self.output_layer = nn.Linear(8, 4)\n",
|
491 |
+
"\n",
|
492 |
+
" def forward(self, x):\n",
|
493 |
+
" x = self.input_layer(x)\n",
|
494 |
+
" x = self.activation_func(x)\n",
|
495 |
+
" x = self.layer1(x)\n",
|
496 |
+
" x = self.activation_func(x)\n",
|
497 |
+
" x = self.layer2(x)\n",
|
498 |
+
" x = self.activation_func(x)\n",
|
499 |
+
" x = self.layer3(x)\n",
|
500 |
+
" x = self.activation_func(x)\n",
|
501 |
+
" x = self.output_layer(x)\n",
|
502 |
+
" x = self.activation_func(x)\n",
|
503 |
+
" return x\n"
|
504 |
+
]
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"cell_type": "markdown",
|
508 |
+
"id": "061e2b52",
|
509 |
+
"metadata": {},
|
510 |
+
"source": [
|
511 |
+
"# Training Loop"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"cell_type": "code",
|
516 |
+
"execution_count": 21,
|
517 |
+
"id": "db035b9d",
|
518 |
+
"metadata": {},
|
519 |
+
"outputs": [
|
520 |
+
{
|
521 |
+
"name": "stdout",
|
522 |
+
"output_type": "stream",
|
523 |
+
"text": [
|
524 |
+
"[500 / 5000] Loss = 40.454681396484375\n",
|
525 |
+
"[1000 / 5000] Loss = 39.701454162597656\n",
|
526 |
+
"[1500 / 5000] Loss = 39.055484771728516\n",
|
527 |
+
"[2000 / 5000] Loss = 38.53948974609375\n",
|
528 |
+
"[2500 / 5000] Loss = 38.149085998535156\n",
|
529 |
+
"[3000 / 5000] Loss = 37.87413024902344\n",
|
530 |
+
"[3500 / 5000] Loss = 37.6934928894043\n",
|
531 |
+
"[4000 / 5000] Loss = 37.573673248291016\n",
|
532 |
+
"[4500 / 5000] Loss = 37.48927307128906\n",
|
533 |
+
"[5000 / 5000] Loss = 37.43183135986328\n"
|
534 |
+
]
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"source": [
|
538 |
+
"torch.manual_seed(1)\n",
|
539 |
+
"\n",
|
540 |
+
"model5000 = MadnessNN()\n",
|
541 |
+
"optimizer = optim.Adam(lr=0.001, params=model5000.parameters())\n",
|
542 |
+
"loss_fn = nn.MSELoss()\n",
|
543 |
+
"epochs = 5000\n",
|
544 |
+
"\n",
|
545 |
+
"for epoch in range(1, epochs + 1):\n",
|
546 |
+
" pred = model5000(X_trainT)\n",
|
547 |
+
" loss = loss_fn(pred, y_trainT)\n",
|
548 |
+
" loss.backward()\n",
|
549 |
+
" optimizer.step()\n",
|
550 |
+
" optimizer.zero_grad()\n",
|
551 |
+
"\n",
|
552 |
+
" if epoch % 500 == 0:\n",
|
553 |
+
" print(f\"[{epoch} / {epochs}] Loss = {loss}\") \n"
|
554 |
+
]
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"cell_type": "code",
|
558 |
+
"execution_count": 22,
|
559 |
+
"id": "b62fd19c",
|
560 |
+
"metadata": {},
|
561 |
+
"outputs": [],
|
562 |
+
"source": [
|
563 |
+
"# save\n",
|
564 |
+
"torch.save(model5000, os.path.join(\"models\", \"model5000.pth\"))"
|
565 |
+
]
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"cell_type": "code",
|
569 |
+
"execution_count": 23,
|
570 |
+
"id": "17694dc7",
|
571 |
+
"metadata": {},
|
572 |
+
"outputs": [
|
573 |
+
{
|
574 |
+
"name": "stdout",
|
575 |
+
"output_type": "stream",
|
576 |
+
"text": [
|
577 |
+
"MSE on testing data: 47.071144104003906\n"
|
578 |
+
]
|
579 |
+
}
|
580 |
+
],
|
581 |
+
"source": [
|
582 |
+
"# evaluate\n",
|
583 |
+
"model5000.eval()\n",
|
584 |
+
"\n",
|
585 |
+
"with torch.no_grad():\n",
|
586 |
+
" pred = model5000(X_testT)\n",
|
587 |
+
" loss = loss_fn(pred, y_testT)\n",
|
588 |
+
" print(f\"MSE on testing data: {loss}\")\n"
|
589 |
+
]
|
590 |
+
}
|
591 |
+
],
|
592 |
+
"metadata": {
|
593 |
+
"kernelspec": {
|
594 |
+
"display_name": "Python 3",
|
595 |
+
"language": "python",
|
596 |
+
"name": "python3"
|
597 |
+
},
|
598 |
+
"language_info": {
|
599 |
+
"codemirror_mode": {
|
600 |
+
"name": "ipython",
|
601 |
+
"version": 3
|
602 |
+
},
|
603 |
+
"file_extension": ".py",
|
604 |
+
"mimetype": "text/x-python",
|
605 |
+
"name": "python",
|
606 |
+
"nbconvert_exporter": "python",
|
607 |
+
"pygments_lexer": "ipython3",
|
608 |
+
"version": "3.11.7"
|
609 |
+
}
|
610 |
+
},
|
611 |
+
"nbformat": 4,
|
612 |
+
"nbformat_minor": 5
|
613 |
+
}
|
src/mens_pre_processing.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|