File size: 1,705 Bytes
cc978cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-wnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5352112676056338
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-wnli
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6978
- Accuracy: 0.5352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 20 | 0.6933 | 0.5493 |
| No log | 2.0 | 40 | 0.6959 | 0.5634 |
| No log | 3.0 | 60 | 0.6978 | 0.5352 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|