Jeremiah Zhou
commited on
Commit
·
d22a896
1
Parent(s):
852fbaf
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: roberta-base-rte
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: glue
|
17 |
+
type: glue
|
18 |
+
args: rte
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.7581227436823105
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# roberta-base-rte
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 1.2942
|
33 |
+
- Accuracy: 0.7581
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 2e-05
|
53 |
+
- train_batch_size: 16
|
54 |
+
- eval_batch_size: 8
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- lr_scheduler_warmup_ratio: 0.06
|
59 |
+
- num_epochs: 10.0
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
65 |
+
| No log | 1.0 | 156 | 0.7072 | 0.4729 |
|
66 |
+
| No log | 2.0 | 312 | 0.6958 | 0.5271 |
|
67 |
+
| No log | 3.0 | 468 | 0.6193 | 0.6462 |
|
68 |
+
| 0.6759 | 4.0 | 624 | 0.6046 | 0.7076 |
|
69 |
+
| 0.6759 | 5.0 | 780 | 0.6365 | 0.7581 |
|
70 |
+
| 0.6759 | 6.0 | 936 | 0.8975 | 0.7545 |
|
71 |
+
| 0.3194 | 7.0 | 1092 | 1.2031 | 0.7581 |
|
72 |
+
| 0.3194 | 8.0 | 1248 | 1.2942 | 0.7581 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.20.0.dev0
|
78 |
+
- Pytorch 1.11.0+cu113
|
79 |
+
- Datasets 2.1.0
|
80 |
+
- Tokenizers 0.12.1
|