Jinchen commited on
Commit
4d26c86
·
1 Parent(s): 257695c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: roberta-base-finetuned-mrpc
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-base-finetuned-mrpc
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3411
23
+ - Accuracy: 0.865
24
+ - F1: 0.9046
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 1
45
+ - eval_batch_size: 1
46
+ - seed: 42
47
+ - distributed_type: IPU
48
+ - gradient_accumulation_steps: 16
49
+ - total_train_batch_size: 64
50
+ - total_eval_batch_size: 20
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 5
54
+ - training precision: Mixed Precision
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
60
+ | 0.4522 | 1.0 | 57 | 0.4265 | 0.8075 | 0.8666 |
61
+ | 0.2951 | 2.0 | 114 | 0.3313 | 0.8625 | 0.9009 |
62
+ | 0.3248 | 3.0 | 171 | 0.3604 | 0.855 | 0.9000 |
63
+ | 0.1417 | 4.0 | 228 | 0.3411 | 0.865 | 0.9046 |
64
+ | 0.1147 | 5.0 | 285 | 0.3359 | 0.865 | 0.9018 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.20.1
70
+ - Pytorch 1.10.0+cpu
71
+ - Datasets 2.3.2
72
+ - Tokenizers 0.12.1