update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: roberta-base-finetuned-mrpc
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# roberta-base-finetuned-mrpc
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3411
|
23 |
+
- Accuracy: 0.865
|
24 |
+
- F1: 0.9046
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 1
|
45 |
+
- eval_batch_size: 1
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: IPU
|
48 |
+
- gradient_accumulation_steps: 16
|
49 |
+
- total_train_batch_size: 64
|
50 |
+
- total_eval_batch_size: 20
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 5
|
54 |
+
- training precision: Mixed Precision
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
60 |
+
| 0.4522 | 1.0 | 57 | 0.4265 | 0.8075 | 0.8666 |
|
61 |
+
| 0.2951 | 2.0 | 114 | 0.3313 | 0.8625 | 0.9009 |
|
62 |
+
| 0.3248 | 3.0 | 171 | 0.3604 | 0.855 | 0.9000 |
|
63 |
+
| 0.1417 | 4.0 | 228 | 0.3411 | 0.865 | 0.9046 |
|
64 |
+
| 0.1147 | 5.0 | 285 | 0.3359 | 0.865 | 0.9018 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.20.1
|
70 |
+
- Pytorch 1.10.0+cpu
|
71 |
+
- Datasets 2.3.2
|
72 |
+
- Tokenizers 0.12.1
|