Question Answering
Transformers
Safetensors
English
doge
text-generation
custom_code
JingzeShi commited on
Commit
33d1292
verified
1 Parent(s): 765dc19

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -5
README.md CHANGED
@@ -3,6 +3,7 @@ library_name: transformers
3
  license: apache-2.0
4
  datasets:
5
  - HuggingFaceTB/smoltalk
 
6
  base_model:
7
  - JingzeShi/Doge-20M
8
  language:
@@ -13,9 +14,11 @@ pipeline_tag: question-answering
13
 
14
  # **Doge 20M Instruct**
15
 
 
 
16
  Doge is an ongoing research project where we aim to train a series of small language models to further explore whether the Transformer framework allows for more complex feedforward network structures, enabling the model to have fewer cache states and larger knowledge capacity.
17
 
18
- In addition, Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by Jingze Shi, it only allows text input and text generation, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), the ongoing research repository is [Wonderful Matrices](https://github.com/LoserCheems/WonderfulMatrices).
19
 
20
 
21
  ## Uses
@@ -31,12 +34,15 @@ generation_config = GenerationConfig(
31
  use_cache=True,
32
  do_sample=True,
33
  temperature=0.8,
 
34
  repetition_penalty=1.0
35
  )
36
  steamer = TextStreamer(
37
  tokenizer=tokenizer,
38
  skip_prompt=True
39
  )
 
 
40
  conversation = [
41
  {"role": "user", "content": prompt}
42
  ]
@@ -57,16 +63,34 @@ outputs = model.generate(
57
 
58
  ## Model Details
59
 
 
 
60
  > TODO: The larger model is under training and will be uploaded soon.
61
 
62
- **Training**:
 
 
 
 
 
 
63
  | Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
64
  |---|---|---|---|---|---|---|
65
- | [Doge-20M-Instruct](https://huggingface.co/JingzeShi/Doge-20M-Instruct) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 8192 | 8e-5 | 1M | bfloat16 |
66
- | [Doge-60M-Instruct](https://huggingface.co/JingzeShi/Doge-60M-Instruct) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 8192 | 6e-5 | 1M | bfloat16 |
 
 
 
 
 
 
 
 
 
 
67
 
68
  **Environment**:
69
- - Image: nvcr.io/nvidia/pytorch:24.10-py3
70
  - Hardware: 1x NVIDIA RTX 4090
71
  - Software: Transformers, TRL
72
 
 
3
  license: apache-2.0
4
  datasets:
5
  - HuggingFaceTB/smoltalk
6
+ - HuggingFaceH4/ultrafeedback_binarized
7
  base_model:
8
  - JingzeShi/Doge-20M
9
  language:
 
14
 
15
  # **Doge 20M Instruct**
16
 
17
+ ![architecture](https://cdn-uploads.huggingface.co/production/uploads/673ab3647afcea17eb4378fd/BBPbIRiw1KxdgYp_5CABf.png)
18
+
19
  Doge is an ongoing research project where we aim to train a series of small language models to further explore whether the Transformer framework allows for more complex feedforward network structures, enabling the model to have fewer cache states and larger knowledge capacity.
20
 
21
+ In addition, Doge uses Dynamic Mask Attention as sequence transformation and can use Multi-Layer Perceptron or Cross Domain Mixture of Experts as state transformation. Dynamic Mask Attention allows the Transformer to use self-attention during training and state space during inference, and Cross Domain Mixture of Experts can directly inherit the weights of Multi-Layer Perceptron for further training. This model is trained by Jingze Shi, it only allows text input and text generation, for detailed algorithm and model architecture, please refer to [Wonderful Matrices](https://arxiv.org/abs/2412.11834), all training details are in [here](https://github.com/LoserCheems/WonderfulMatrices).
22
 
23
 
24
  ## Uses
 
34
  use_cache=True,
35
  do_sample=True,
36
  temperature=0.8,
37
+ top_p=0.9,
38
  repetition_penalty=1.0
39
  )
40
  steamer = TextStreamer(
41
  tokenizer=tokenizer,
42
  skip_prompt=True
43
  )
44
+
45
+ prompt = "Hi, how are you doing today?"
46
  conversation = [
47
  {"role": "user", "content": prompt}
48
  ]
 
63
 
64
  ## Model Details
65
 
66
+ We build the Doge-Instruct by first SFT on [SmolTalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) and then DPO on [UltraFeedback Binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
67
+
68
  > TODO: The larger model is under training and will be uploaded soon.
69
 
70
+ **SFT**:
71
+ | Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
72
+ |---|---|---|---|---|---|---|
73
+ | [Doge-20M-Instruct-SFT](https://huggingface.co/JingzeShi/Doge-20M-Instruct-SFT) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 8192 | 8e-4 | 1M | bfloat16 |
74
+ | [Doge-60M-Instruct](https://huggingface.co/JingzeShi/Doge-60M-Instruct) | [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk) | 2 | 8192 | 6e-4 | 1M | bfloat16 |
75
+
76
+ **DPO**:
77
  | Model | Training Data | Epochs | Content Length | LR | Batch Size | Precision |
78
  |---|---|---|---|---|---|---|
79
+ | [Doge-20M-Instruct](https://huggingface.co/JingzeShi/Doge-20M-Instruct) | [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 8e-5 | 0.125M | bfloat16 |
80
+ | [Doge-60M-Instruct](https://huggingface.co/JingzeShi/Doge-60M-Instruct) | [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) | 2 | 1024 | 6e-5 | 0.125M | bfloat16 |
81
+
82
+
83
+ **Procedure**:
84
+
85
+ **SFT**:
86
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/xl21ytg8)
87
+
88
+ **DPO**:
89
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/loser_cheems/huggingface/runs/874wshj2)
90
+
91
 
92
  **Environment**:
93
+ - Image: nvcr.io/nvidia/pytorch:24.12-py3
94
  - Hardware: 1x NVIDIA RTX 4090
95
  - Software: Transformers, TRL
96