Josephgflowers
commited on
Upload LM.py
Browse files
LM.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoConfig, AutoTokenizer, LlamaForCausalLM
|
4 |
+
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
5 |
+
|
6 |
+
# Custom Modules
|
7 |
+
|
8 |
+
class AdaptiveRMSNorm(nn.Module):
|
9 |
+
"""
|
10 |
+
Adaptive RMSNorm layer where the scaling parameter adapts based on input.
|
11 |
+
"""
|
12 |
+
def __init__(self, normalized_shape, adaptive_dim, eps=1e-6):
|
13 |
+
super(AdaptiveRMSNorm, self).__init__()
|
14 |
+
self.normalized_shape = normalized_shape
|
15 |
+
self.eps = eps
|
16 |
+
|
17 |
+
# Standard RMSNorm weight parameter
|
18 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
19 |
+
|
20 |
+
# Adaptive scaling parameter
|
21 |
+
self.fc_gamma = nn.Linear(adaptive_dim, normalized_shape)
|
22 |
+
|
23 |
+
def forward(self, x, adapt_input):
|
24 |
+
# Compute adaptive scaling factor gamma
|
25 |
+
gamma = self.fc_gamma(adapt_input).unsqueeze(1) # Shape: [batch_size, 1, hidden_size]
|
26 |
+
|
27 |
+
# Compute RMSNorm
|
28 |
+
norm_x = x / x.norm(dim=-1, keepdim=True).clamp(min=self.eps)
|
29 |
+
|
30 |
+
# Apply adaptive scaling
|
31 |
+
return self.weight * norm_x * gamma
|
32 |
+
|
33 |
+
class TokenMixing(nn.Module):
|
34 |
+
"""
|
35 |
+
Token Mixing layer that performs depthwise convolution across the sequence dimension.
|
36 |
+
"""
|
37 |
+
def __init__(self, hidden_size):
|
38 |
+
super(TokenMixing, self).__init__()
|
39 |
+
self.token_mixing = nn.Conv1d(
|
40 |
+
in_channels=hidden_size,
|
41 |
+
out_channels=hidden_size,
|
42 |
+
kernel_size=3,
|
43 |
+
padding=1,
|
44 |
+
groups=hidden_size # Depthwise convolution
|
45 |
+
)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
# x shape: [batch_size, seq_length, hidden_size]
|
49 |
+
x = x.transpose(1, 2) # Shape: [batch_size, hidden_size, seq_length]
|
50 |
+
x = self.token_mixing(x)
|
51 |
+
x = x.transpose(1, 2) # Shape back to [batch_size, seq_length, hidden_size]
|
52 |
+
return x
|
53 |
+
|
54 |
+
class SEBlock(nn.Module):
|
55 |
+
"""
|
56 |
+
Squeeze-and-Excitation block that adaptively recalibrates channel-wise features.
|
57 |
+
"""
|
58 |
+
def __init__(self, hidden_size, reduction=16):
|
59 |
+
super(SEBlock, self).__init__()
|
60 |
+
self.fc = nn.Sequential(
|
61 |
+
nn.Linear(hidden_size, hidden_size // reduction, bias=False),
|
62 |
+
nn.ReLU(inplace=True),
|
63 |
+
nn.Linear(hidden_size // reduction, hidden_size, bias=False),
|
64 |
+
nn.Sigmoid()
|
65 |
+
)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
# x shape: [batch_size, seq_length, hidden_size]
|
69 |
+
y = x.mean(dim=1) # Global average pooling over sequence length
|
70 |
+
y = self.fc(y) # Squeeze and Excitation
|
71 |
+
y = y.unsqueeze(1) # Shape: [batch_size, 1, hidden_size]
|
72 |
+
return x * y # Scale the original input
|
73 |
+
|
74 |
+
# Modified Decoder Layer
|
75 |
+
|
76 |
+
class ModifiedLlamaDecoderLayer(nn.Module):
|
77 |
+
"""
|
78 |
+
Modified Llama Decoder Layer with AdaptiveRMSNorm, TokenMixing, and SEBlock.
|
79 |
+
"""
|
80 |
+
def __init__(self, original_layer, config):
|
81 |
+
super().__init__()
|
82 |
+
self.hidden_size = config.hidden_size
|
83 |
+
self.adaptive_dim = config.hidden_size # Using hidden_size for adapt_input
|
84 |
+
|
85 |
+
# Copy the original attention and MLP layers
|
86 |
+
self.self_attn = original_layer.self_attn
|
87 |
+
self.mlp = original_layer.mlp
|
88 |
+
|
89 |
+
# Replace RMSNorm layers with AdaptiveRMSNorm
|
90 |
+
self.input_layernorm = AdaptiveRMSNorm(self.hidden_size, self.adaptive_dim, eps=config.rms_norm_eps)
|
91 |
+
self.post_attention_layernorm = AdaptiveRMSNorm(self.hidden_size, self.adaptive_dim, eps=config.rms_norm_eps)
|
92 |
+
|
93 |
+
# Add Token Mixing Layer
|
94 |
+
self.token_mixing = TokenMixing(self.hidden_size)
|
95 |
+
|
96 |
+
# Add SE Block
|
97 |
+
self.se_block = SEBlock(self.hidden_size, reduction=16)
|
98 |
+
|
99 |
+
def forward(
|
100 |
+
self,
|
101 |
+
hidden_states,
|
102 |
+
attention_mask=None,
|
103 |
+
position_ids=None,
|
104 |
+
past_key_value=None,
|
105 |
+
use_cache=False,
|
106 |
+
output_attentions=False,
|
107 |
+
**kwargs, # Capture additional arguments
|
108 |
+
):
|
109 |
+
# Compute adaptation input
|
110 |
+
adapt_input = hidden_states.mean(dim=1) # Shape: [batch_size, hidden_size]
|
111 |
+
|
112 |
+
residual = hidden_states
|
113 |
+
|
114 |
+
# Input layer normalization with adaptive RMSNorm
|
115 |
+
hidden_states = self.input_layernorm(hidden_states, adapt_input)
|
116 |
+
|
117 |
+
# Self-attention
|
118 |
+
attn_outputs = self.self_attn(
|
119 |
+
hidden_states=hidden_states,
|
120 |
+
attention_mask=attention_mask,
|
121 |
+
position_ids=position_ids,
|
122 |
+
past_key_value=past_key_value,
|
123 |
+
output_attentions=output_attentions,
|
124 |
+
use_cache=use_cache,
|
125 |
+
**kwargs, # Pass additional arguments to self_attn
|
126 |
+
)
|
127 |
+
attn_output = attn_outputs[0]
|
128 |
+
if use_cache:
|
129 |
+
present_key_value = attn_outputs[1]
|
130 |
+
else:
|
131 |
+
present_key_value = None
|
132 |
+
if output_attentions:
|
133 |
+
attn_weights = attn_outputs[-1]
|
134 |
+
else:
|
135 |
+
attn_weights = None
|
136 |
+
|
137 |
+
hidden_states = residual + attn_output
|
138 |
+
|
139 |
+
# Token Mixing
|
140 |
+
token_mixed = self.token_mixing(hidden_states)
|
141 |
+
hidden_states = hidden_states + token_mixed
|
142 |
+
|
143 |
+
# Post-attention layer normalization with adaptive RMSNorm
|
144 |
+
hidden_states = self.post_attention_layernorm(hidden_states, adapt_input)
|
145 |
+
|
146 |
+
# MLP
|
147 |
+
residual = hidden_states
|
148 |
+
hidden_states = self.mlp(hidden_states)
|
149 |
+
|
150 |
+
# SE Block
|
151 |
+
hidden_states = self.se_block(hidden_states)
|
152 |
+
|
153 |
+
hidden_states = residual + hidden_states
|
154 |
+
|
155 |
+
outputs = (hidden_states,)
|
156 |
+
|
157 |
+
if use_cache:
|
158 |
+
outputs += (present_key_value,)
|
159 |
+
|
160 |
+
if output_attentions:
|
161 |
+
outputs += (attn_weights,)
|
162 |
+
|
163 |
+
return outputs
|
164 |
+
|
165 |
+
# Load the pre-trained model
|
166 |
+
|
167 |
+
# Load the configuration from the pre-trained model
|
168 |
+
config = AutoConfig.from_pretrained('/home/joe/Music/220-agent')
|
169 |
+
|
170 |
+
# Load the pre-trained model
|
171 |
+
pretrained_model = LlamaForCausalLM.from_pretrained('/home/joe/Music/220-agent')
|
172 |
+
|
173 |
+
# Replace the decoder layers with modified layers
|
174 |
+
for i in range(config.num_hidden_layers):
|
175 |
+
# Original layer
|
176 |
+
original_layer = pretrained_model.model.layers[i]
|
177 |
+
# Replace with modified layer
|
178 |
+
pretrained_model.model.layers[i] = ModifiedLlamaDecoderLayer(original_layer, config)
|
179 |
+
|
180 |
+
# The modified model is now ready
|
181 |
+
modified_model = pretrained_model
|
182 |
+
|
183 |
+
# Save the model and tokenizer
|
184 |
+
output_dir = "./saved_model"
|
185 |
+
modified_model.save_pretrained(output_dir)
|
186 |
+
tokenizer = AutoTokenizer.from_pretrained('/home/joe/Music/220-agent', legacy=False)
|
187 |
+
tokenizer.save_pretrained(output_dir)
|
188 |
+
|
189 |
+
print(f"Model and tokenizer saved to {output_dir}")
|
190 |
+
|
191 |
+
# Example Usage
|
192 |
+
|
193 |
+
input_text = "Hello, how are you?"
|
194 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
195 |
+
|
196 |
+
# Forward pass
|
197 |
+
outputs = modified_model(input_ids=input_ids)
|
198 |
+
logits = outputs.logits
|
199 |
+
|
200 |
+
print("Logits shape:", logits.shape) # Should be [batch_size, seq_length, vocab_size]
|
201 |
+
|