JunxiongWang
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,62 +1,27 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
4 |
-
- alignment-handbook
|
5 |
-
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- HuggingFaceH4/ultrafeedback_binarized
|
8 |
-
- HuggingFaceH4/orca_dpo_pairs
|
9 |
-
- JunxiongWang/llama3-ultrafeedback-armorm
|
10 |
-
model-index:
|
11 |
-
- name: Llama-Mamba2-3.1-8B-teacher-Llama-3.1-70B-Instruct-kl1.0-ce0.0-dpo-short
|
12 |
-
results: []
|
13 |
---
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
The following hyperparameters were used during training:
|
40 |
-
- learning_rate: 5e-07
|
41 |
-
- train_batch_size: 4
|
42 |
-
- eval_batch_size: 4
|
43 |
-
- seed: 42
|
44 |
-
- distributed_type: multi-GPU
|
45 |
-
- num_devices: 8
|
46 |
-
- total_train_batch_size: 32
|
47 |
-
- total_eval_batch_size: 32
|
48 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
-
- lr_scheduler_type: cosine
|
50 |
-
- lr_scheduler_warmup_ratio: 0.1
|
51 |
-
- num_epochs: 1
|
52 |
-
|
53 |
-
### Training results
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
### Framework versions
|
58 |
-
|
59 |
-
- Transformers 4.43.1
|
60 |
-
- Pytorch 2.1.1+cu118
|
61 |
-
- Datasets 2.20.0
|
62 |
-
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
+
Zero-shot results when using the [Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) as the teacher model, and the [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) as the initialized model
|
6 |
+
|
7 |
+
| Task | Llama-3.1-8B-Instruct | Llama3.1-Mamba-8B-distill | Llama3.1-Mamba-8B-dpo | Llama3.1-Mamba2-8B-distill | Llama3.1-Mamba2-8B-dpo |
|
8 |
+
|---------------------|-----------------------|--------------------------|-----------------------|---------------------------|-----------------------|
|
9 |
+
| arc_challenge | 0.552 | 0.5384 | 0.5657 | 0.5265 | 0.5973 |
|
10 |
+
| arc_easy | 0.8178 | 0.8224 | 0.8401 | 0.822 | 0.8481 |
|
11 |
+
| hellaswag | 0.7921 | 0.7591 | 0.7736 | 0.7536 | 0.7969 |
|
12 |
+
| mmlu (0 shot) | 0.6812 | 0.6213 | 0.636 | 0.6101 | 0.5974 |
|
13 |
+
| openbookqa | 0.432 | 0.428 | 0.442 | 0.416 | 0.44 |
|
14 |
+
| piqa | 0.8079 | 0.7933 | 0.8041 | 0.7889 | 0.8003 |
|
15 |
+
| pubmedqa | 0.752 | 0.72 | 0.744 | 0.726 | 0.746 |
|
16 |
+
| race | 0.4478 | 0.4211 | 0.4344 | 0.4211 | 0.4612 |
|
17 |
+
| winogrande | 0.7388 | 0.7277 | 0.738 | 0.7174 | 0.7411 |
|
18 |
+
| truthful | 0.4267 | 0.4002 | 0.4607 | 0.4031 | 0.5022 |
|
19 |
+
|
20 |
+
```
|
21 |
+
@article{junxiongdaniele2024mambainllama,
|
22 |
+
title = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
|
23 |
+
author = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
|
24 |
+
journal = {arXiv preprint arXiv:2408.15237},
|
25 |
+
year = {2024}
|
26 |
+
}
|
27 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|