Jzuluaga commited on
Commit
389b0fc
·
1 Parent(s): ce167af

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -11
README.md CHANGED
@@ -1,37 +1,174 @@
1
  ---
2
  license: apache-2.0
 
 
 
3
  tags:
 
4
  - automatic-speech-recognition
5
- - experiments/data/uwb_atcc/train
 
6
  - generated_from_trainer
7
  metrics:
8
  - wer
9
  model-index:
10
- - name: 0.0ld_0.0ad_0.0attd_0.05fpd_0.075mtp_12mtl_0.0mfp_12mfl_1acc
11
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # 0.0ld_0.0ad_0.0attd_0.05fpd_0.075mtp_12mtl_0.0mfp_12mfl_1acc
 
 
 
 
 
 
 
18
 
19
- This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the EXPERIMENTS/DATA/UWB_ATCC/TRAIN - NA dataset.
20
  It achieves the following results on the evaluation set:
21
  - Loss: 0.7287
22
  - Wer: 0.1756
23
 
24
- ## Model description
 
 
 
 
25
 
26
- More information needed
 
 
 
 
27
 
28
  ## Intended uses & limitations
29
 
30
- More information needed
 
31
 
32
  ## Training and evaluation data
33
 
34
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
1
  ---
2
  license: apache-2.0
3
+ language: en
4
+ datasets:
5
+ - Jzuluaga/uwb_atcc
6
  tags:
7
+ - audio
8
  - automatic-speech-recognition
9
+ - en-atc
10
+ - en
11
  - generated_from_trainer
12
  metrics:
13
  - wer
14
  model-index:
15
+ - name: wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc
16
+ results:
17
+ - task:
18
+ type: automatic-speech-recognition
19
+ name: Speech Recognition
20
+ dataset:
21
+ type: Jzuluaga/uwb_atcc
22
+ name: UWB-ATCC dataset (Air Traffic Control Communications)
23
+ config: test
24
+ split: test
25
+ metrics:
26
+ - type: wer
27
+ value: 17.20
28
+ name: TEST WER
29
+ verified: False
30
+ - type: wer
31
+ value: 13.72
32
+ name: TEST WER (+LM)
33
+ verified: False
34
+ - task:
35
+ type: automatic-speech-recognition
36
+ name: Speech Recognition
37
+ dataset:
38
+ type: Jzuluaga/atcosim_corpus
39
+ name: ATCOSIM corpus (Air Traffic Control Communications)
40
+ config: test
41
+ split: test
42
+ metrics:
43
+ - type: wer
44
+ value: 15.31
45
+ name: TEST WER
46
+ verified: False
47
+ - type: wer
48
+ value: 11.88
49
+ name: TEST WER (+LM)
50
+ verified: False
51
  ---
52
 
53
+ # wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc
 
54
 
55
+ This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the [UWB-ATCC corpus](https://huggingface.co/datasets/Jzuluaga/uwb_atcc).
56
+
57
+ <a href="https://colab.research.google.com/github/idiap/w2v2-air-traffic/blob/main/src/eval_xlsr_atc_model.ipynb">
58
+ <img alt="GitHub" src="https://colab.research.google.com/assets/colab-badge.svg\">
59
+ </a>
60
+ <a href="https://github.com/idiap/w2v2-air-traffic">
61
+ <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\">
62
+ </a>
63
 
 
64
  It achieves the following results on the evaluation set:
65
  - Loss: 0.7287
66
  - Wer: 0.1756
67
 
68
+ Paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822).
69
+
70
+ Authors: Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan
71
+
72
+ Abstract: Recent work on self-supervised pre-training focus</b> on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E)acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset.
73
 
74
+ Code GitHub repository: https://github.com/idiap/w2v2-air-traffic
75
+
76
+ ## Usage
77
+
78
+ You can use our Google Colab notebook to run and evaluate our model: https://github.com/idiap/w2v2-air-traffic/blob/master/src/eval_xlsr_atc_model.ipynb
79
 
80
  ## Intended uses & limitations
81
 
82
+ This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice.
83
+
84
 
85
  ## Training and evaluation data
86
 
87
+ See Table 1 (page 3) in our paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). We described there the partitions of how to use our model.
88
+
89
+ - We use the UWB-ATCC corpus to fine-tune this model. You can download the raw data here: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
90
+ - However, do not worry, we have prepared the database in `Datasets format`. Here, [UWB-ATCC corpus on HuggingFace](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). You can scroll and check the train/test partitions, and even listen to some audios.
91
+ - If you want to prepare a database in HuggingFace format, you can follow the data loader script in: [data_loader_atc.py](https://huggingface.co/datasets/Jzuluaga/uwb_atcc/blob/main/atc_data_loader.py).
92
+ -
93
+ ## Writing your own inference script
94
+
95
+ If you use language model, you need to install the KenLM bindings with:
96
+
97
+ ```bash
98
+ conda activate your_environment
99
+ pip install https://github.com/kpu/kenlm/archive/master.zip
100
+ ```
101
+
102
+ The snippet of code:
103
+
104
+ ```python
105
+ from datasets import load_dataset, load_metric, Audio
106
+ import torch
107
+ from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
108
+ import torchaudio.functional as F
109
+
110
+ USE_LM = False
111
+ DATASET_ID = "Jzuluaga/uwb_atcc"
112
+ MODEL_ID = "Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc"
113
+
114
+ # 1. Load the dataset
115
+ # we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly
116
+ uwb_atcc_corpus_test = load_dataset(DATASET_ID, "test", split="test")
117
+
118
+ # 2. Load the model
119
+ model = AutoModelForCTC.from_pretrained(MODEL_ID)
120
+
121
+ # 3. Load the processors, we offer support with LM, which should yield better resutls
122
+ if USE_LM:
123
+ processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
124
+ else:
125
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
126
+ # 4. Format the test sample
127
+ sample = next(iter(uwb_atcc_corpus_test))
128
+ file_sampling_rate = sample['audio']['sampling_rate']
129
+ # resample if neccessary
130
+ if file_sampling_rate != 16000:
131
+ resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy()
132
+ else:
133
+ resampled_audio = torch.tensor(sample["audio"]["array"]).numpy()
134
+ input_values = processor(resampled_audio, return_tensors="pt").input_values
135
+
136
+ # 5. Run the forward pass in the model
137
+ with torch.no_grad():
138
+ logits = model(input_values).logits
139
+
140
+ # get the transcription with processor
141
+ if USE_LM:
142
+ transcription = processor.batch_decode(logits.numpy()).text
143
+ else:
144
+ pred_ids = torch.argmax(logits, dim=-1)
145
+ transcription = processor.batch_decode(pred_ids)
146
+ # print the output
147
+ print(transcription)
148
+ ```
149
+
150
+ # Cite us
151
+
152
+ If you use this code for your research, please cite our paper with:
153
+
154
+ ```
155
+ @article{zuluaga2022how,
156
+ title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
157
+ author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and Motlicek, Petr and Kleinert, Matthias and Helmke, Hartmut and Ohneiser, Oliver and Zhan, Qingran},
158
+ journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
159
+ year={2022}
160
+ }
161
+ ```
162
+ and,
163
+
164
+ ```
165
+ @article{zuluaga2022bertraffic,
166
+ title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
167
+ author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and Nigmatulina, Iuliia and Motlicek, Petr and Ondre, Karel and Ohneiser, Oliver and Helmke, Hartmut},
168
+ journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
169
+ year={2022}
170
+ }
171
+ ```
172
 
173
  ## Training procedure
174