File size: 12,808 Bytes
b90f2b8 ace3987 b36e3d8 b90f2b8 b36e3d8 283ed50 b36e3d8 283ed50 b36e3d8 283ed50 b36e3d8 d3b74de b36e3d8 b90f2b8 a65f4bc b90f2b8 01d0410 a42c18b a65f4bc b90f2b8 104c555 b90f2b8 28b01d0 b90f2b8 104c555 b90f2b8 a65f4bc 104c555 b90f2b8 28b01d0 b90f2b8 a65f4bc b90f2b8 97d49ab b90f2b8 a65f4bc b90f2b8 a65f4bc a42c18b a65f4bc b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 12b144a b90f2b8 a42c18b e5e754a caba06f 4287315 e5e754a 4287315 b90f2b8 b36e3d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
---
pipeline_tag: sentence-similarity
lang:
- sv
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- source_sentence: Mannen åt mat.
sentences:
- Han förtärde en närande och nyttig måltid.
- Det var ett sunkigt hak med ganska gott käk.
- Han inmundigade middagen tillsammans med ett glas rödvin.
- Potatischips är jättegoda.
- Tryck på knappen för att få tala med kundsupporten.
example_title: Mat
- source_sentence: Kan jag deklarera digitalt från utlandet?
sentences:
- Du som befinner dig i utlandet kan deklarera digitalt på flera olika sätt.
- >-
Du som har kvarskatt att betala ska göra en inbetalning till ditt
skattekonto.
- >-
Efter att du har deklarerat går vi igenom uppgifterna i din deklaration och
räknar ut din skatt.
- >-
I din deklaration som du får från oss har vi räknat ut vad du ska betala
eller få tillbaka.
- Tryck på knappen för att få tala med kundsupporten.
example_title: Skatteverket FAQ
- source_sentence: Hon kunde göra bakåtvolter.
sentences:
- Hon var atletisk.
- Hon var bra på gymnastik.
- Hon var inte atletisk.
- Hon var oförmögen att flippa baklänges.
example_title: Gymnastik
license: cc-by-nc-4.0
---
# KBLab/sentence-bert-swedish-cased
This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model.
A more detailed description of the model can be found in an article we published on the KBLab blog [here](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/) and for the updated model [here](https://kb-labb.github.io/posts/2023-01-16-sentence-transformer-20/).
**Update**: We have released updated versions of the model since the initial release. The original model described in the blog post is **v1.0**. The current version is **v2.0**. The newer versions are trained on longer paragraphs, and have a longer max sequence length. **v2.0** is trained with a stronger teacher model and is the current default.
| Model version | Teacher Model | Max Sequence Length |
|---------------|---------|----------|
| v1.0 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 256 |
| v1.1 | [paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) | 384 |
| v2.0 | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 384 |
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]
model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
embeddings = model.encode(sentences)
print(embeddings)
```
### Loading an older model version (Sentence-Transformers)
Currently, the easiest way to load an older model version is to clone the model repository and load it from disk. For example, to clone the **v1.0** model:
```bash
git clone --depth 1 --branch v1.0 https://huggingface.co/KBLab/sentence-bert-swedish-cased
```
Then you can load the model by pointing to the local folder where you cloned the model:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("path_to_model_folder/sentence-bert-swedish-cased")
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
# Load model from HuggingFace Hub
# To load an older version, e.g. v1.0, add the argument revision="v1.0"
tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
### Loading an older model (Hugginfface Transformers)
To load an older model specify the version tag with the `revision` arg. For example, to load the **v1.0** model, use the following code:
```python
AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased', revision="v1.0")
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
The model was evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase) and **SweParaphrase v2.0**. This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. Results from **SweParaphrase v1.0** are displayed below.
| Model version | Pearson | Spearman |
|---------------|---------|----------|
| v1.0 | 0.9183 | 0.9114 |
| v1.1 | 0.9183 | 0.9114 |
| v2.0 | **0.9283** | **0.9130** |
The following code snippet can be used to reproduce the above results:
```python
from sentence_transformers import SentenceTransformer
import pandas as pd
df = pd.read_csv(
"sweparaphrase-dev-165.csv",
sep="\t",
header=None,
names=[
"original_id",
"source",
"type",
"sentence_swe1",
"sentence_swe2",
"score",
"sentence1",
"sentence2",
],
)
model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")
sentences1 = df["sentence_swe1"].tolist()
sentences2 = df["sentence_swe2"].tolist()
# Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
# Compute cosine similarity after normalizing
embeddings1 /= embeddings1.norm(dim=-1, keepdim=True)
embeddings2 /= embeddings2.norm(dim=-1, keepdim=True)
cosine_scores = embeddings1 @ embeddings2.t()
sentence_pair_scores = cosine_scores.diag()
df["model_score"] = sentence_pair_scores.cpu().tolist()
print(df[["score", "model_score"]].corr(method="spearman"))
print(df[["score", "model_score"]].corr(method="pearson"))
```
### Sweparaphrase v2.0
In general, **v1.1** correlates the most with human assessment of text similarity on SweParaphrase v2.0. Below, we present zero-shot evaluation results on all data splits. They display the model's performance out of the box, without any fine-tuning.
| Model version | Data split | Pearson | Spearman |
|---------------|------------|------------|------------|
| v1.0 | train | 0.8355 | 0.8256 |
| v1.1 | train | **0.8383** | **0.8302** |
| v2.0 | train | 0.8209 | 0.8059 |
| v1.0 | dev | 0.8682 | 0.8774 |
| v1.1 | dev | **0.8739** | **0.8833** |
| v2.0 | dev | 0.8638 | 0.8668 |
| v1.0 | test | 0.8356 | 0.8476 |
| v1.1 | test | **0.8393** | **0.8550** |
| v2.0 | test | 0.8232 | 0.8213 |
### SweFAQ v2.0
When it comes to retrieval tasks, **v2.0** performs the best by quite a substantial margin. It is better at matching the correct answer to a question compared to v1.1 and v1.0.
| Model version | Data split | Accuracy |
|---------------|------------|------------|
| v1.0 | train | 0.5262 |
| v1.1 | train | 0.6236 |
| v2.0 | train | **0.7106** |
| v1.0 | dev | 0.4636 |
| v1.1 | dev | 0.5818 |
| v2.0 | dev | **0.6727** |
| v1.0 | test | 0.4495 |
| v1.1 | test | 0.5229 |
| v2.0 | test | **0.5871** |
Examples how to evaluate the models on some of the test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).
## Training
An article with more details on data and v1.0 of the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, DGT-TM, EMEA, ELITR-ECA, TED2020, Tatoeba and OpenSubtitles.
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 180513 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MSELoss.MSELoss`
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 8e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 5000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
This model was trained by KBLab, a data lab at the National Library of Sweden.
You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ .
```
@misc{rekathati2021introducing,
author = {Rekathati, Faton},
title = {The KBLab Blog: Introducing a Swedish Sentence Transformer},
url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/},
year = {2021}
}
```
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)). |