kimsan0622
commited on
Commit
·
f1b1177
1
Parent(s):
8064bed
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- jsonl_dataset_sum.py
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: summarization_all
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Summarization
|
13 |
+
type: summarization
|
14 |
+
dataset:
|
15 |
+
name: jsonl_dataset_sum.py
|
16 |
+
type: jsonl_dataset_sum.py
|
17 |
+
config: 'null'
|
18 |
+
split: None
|
19 |
+
metrics:
|
20 |
+
- name: Rouge1
|
21 |
+
type: rouge
|
22 |
+
value: 21.9857
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# summarization_all
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the jsonl_dataset_sum.py dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 1.1442
|
33 |
+
- Rouge1: 21.9857
|
34 |
+
- Rouge2: 10.2876
|
35 |
+
- Rougel: 21.4026
|
36 |
+
- Rougelsum: 21.4278
|
37 |
+
- Gen Len: 86.2560
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.001
|
57 |
+
- train_batch_size: 1
|
58 |
+
- eval_batch_size: 1
|
59 |
+
- seed: 42
|
60 |
+
- distributed_type: multi-GPU
|
61 |
+
- num_devices: 8
|
62 |
+
- total_train_batch_size: 8
|
63 |
+
- total_eval_batch_size: 8
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- num_epochs: 10.0
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
71 |
+
|:-------------:|:-----:|:-------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
72 |
+
| 1.2503 | 1.0 | 184670 | 1.2439 | 20.2525 | 9.1467 | 19.7454 | 19.771 | 87.1766 |
|
73 |
+
| 1.1629 | 2.0 | 369340 | 1.1773 | 21.0068 | 9.6691 | 20.4565 | 20.4888 | 89.6074 |
|
74 |
+
| 1.1087 | 3.0 | 554010 | 1.1431 | 21.0216 | 9.6545 | 20.489 | 20.5108 | 85.5895 |
|
75 |
+
| 1.056 | 4.0 | 738680 | 1.1247 | 21.6776 | 10.1424 | 21.09 | 21.1168 | 89.6576 |
|
76 |
+
| 1.0199 | 5.0 | 923350 | 1.1179 | 21.6563 | 10.0965 | 21.0814 | 21.1056 | 89.2454 |
|
77 |
+
| 0.9652 | 6.0 | 1108020 | 1.1122 | 21.6209 | 10.0725 | 21.0623 | 21.0864 | 86.7079 |
|
78 |
+
| 0.92 | 7.0 | 1292690 | 1.1136 | 21.9396 | 10.2734 | 21.3465 | 21.3745 | 86.5547 |
|
79 |
+
| 0.8804 | 8.0 | 1477360 | 1.1228 | 21.8457 | 10.1858 | 21.2552 | 21.278 | 87.6413 |
|
80 |
+
| 0.8447 | 9.0 | 1662030 | 1.1327 | 21.92 | 10.2635 | 21.3415 | 21.3633 | 86.4453 |
|
81 |
+
| 0.7678 | 10.0 | 1846700 | 1.1442 | 21.9857 | 10.2876 | 21.4026 | 21.4278 | 86.2560 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.25.1
|
87 |
+
- Pytorch 1.12.0
|
88 |
+
- Datasets 2.8.0
|
89 |
+
- Tokenizers 0.13.2
|