File size: 1,517 Bytes
f86de78
9accfda
 
 
 
 
f86de78
 
9accfda
 
f86de78
9accfda
f86de78
9accfda
 
 
f86de78
9accfda
f86de78
9accfda
f86de78
9accfda
f86de78
9accfda
f86de78
9accfda
f86de78
9accfda
f86de78
9accfda
f86de78
9accfda
f86de78
9accfda
 
 
 
 
 
 
 
 
 
 
 
 
 
f86de78
9accfda
f86de78
9accfda
 
 
 
 
 
f86de78
 
9accfda
f86de78
9accfda
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
tags:
- generated_from_trainer
model-index:
- name: mistral-7b-peptide-v3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-peptide-v3

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4322

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 470

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.2813        | 0.2128 | 100  | 0.1996          |
| 0.0711        | 0.4255 | 200  | 0.3298          |
| 0.0428        | 0.6383 | 300  | 0.2944          |
| 0.034         | 0.8511 | 400  | 0.4322          |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1