File size: 1,635 Bytes
b3e2c70 0f4ac77 b3e2c70 4fa72bb b3e2c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- "ko"
tags:
- "korean"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: team-lucid/deberta-v3-base-korean
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
widget:
- text: "홍시 맛이 나서 홍시라 생각한다."
- text: "紅柹 맛이 나서 紅柹라 生覺한다."
---
# deberta-base-korean-morph-upos
## Model Description
This is a DeBERTa(V3) model pre-trained on Korean texts for POS-tagging and dependency-parsing, derived from [deberta-v3-base-korean](https://huggingface.co/team-lucid/deberta-v3-base-korean) and [morphUD-korean](https://github.com/jungyeul/morphUD-korean). Every morpheme (형태소) is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-korean-morph-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-korean-morph-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("홍시 맛이 나서 홍시라 생각한다."))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/deberta-base-korean-morph-upos")
print(nlp("홍시 맛이 나서 홍시라 생각한다."))
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
|