File size: 876 Bytes
52dc966
 
 
 
 
 
 
 
3a38e8f
52dc966
 
 
 
 
 
 
 
 
 
cfc4aa3
52dc966
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
language:
- "zh"
tags:
- "chinese"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: KoichiYasuoka/deberta-large-chinese-erlangshen-upos
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
---

# deberta-large-chinese-erlangshen-ud-goeswith

## Model Description

This is a DeBERTa(V2) model pre-trained on Chinese texts (both simplified and traditional) for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [deberta-large-chinese-erlangshen-upos](https://huggingface.co/KoichiYasuoka/deberta-large-chinese-erlangshen-upos).

## How to Use

```py
from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-large-chinese-erlangshen-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("我把这本书看完了"))
```