KoichiYasuoka commited on
Commit
8c18f3a
·
1 Parent(s): 371cfbe

algorithm improved

Browse files
Files changed (1) hide show
  1. ud.py +19 -32
ud.py CHANGED
@@ -6,7 +6,7 @@ class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
6
  super().__init__(**kwargs)
7
  x=self.model.config.label2id
8
  y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
9
- self.transition=numpy.full((len(x),len(x)),numpy.nan)
10
  for k,v in x.items():
11
  for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
12
  self.transition[v,x[j]]=0
@@ -15,14 +15,16 @@ class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
15
  def postprocess(self,model_outputs,**kwargs):
16
  if "logits" not in model_outputs:
17
  return self.postprocess(model_outputs[0],**kwargs)
 
 
18
  m=model_outputs["logits"][0].numpy()
19
  e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
20
  z=e/e.sum(axis=-1,keepdims=True)
21
  for i in range(m.shape[0]-1,0,-1):
22
- m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
23
- k=[numpy.nanargmax(m[0]+self.transition[0])]
24
  for i in range(1,m.shape[0]):
25
- k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
26
  w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
27
  if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
28
  for i,t in reversed(list(enumerate(w))):
@@ -43,9 +45,9 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
43
  kwargs["aggregation_strategy"]="simple"
44
  super().__init__(**kwargs)
45
  x=self.model.config.label2id
46
- self.root=numpy.full((len(x)),numpy.nan)
47
- self.left_arc=numpy.full((len(x)),numpy.nan)
48
- self.right_arc=numpy.full((len(x)),numpy.nan)
49
  for k,v in x.items():
50
  if k.endswith("|root"):
51
  self.root[v]=0
@@ -55,26 +57,11 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
55
  self.right_arc[v]=0
56
  def postprocess(self,model_outputs,**kwargs):
57
  import torch
 
58
  if "logits" not in model_outputs:
59
  return self.postprocess(model_outputs[0],**kwargs)
60
- m=model_outputs["logits"][0].numpy()
61
- for i in range(m.shape[0]-1,0,-1):
62
- m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
63
- k=[numpy.nanargmax(m[0]+self.transition[0])]
64
- for i in range(1,m.shape[0]):
65
- k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
66
- w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
67
- for i,t in reversed(list(enumerate(w))):
68
- p=t.pop("entity")
69
- if p.startswith("I-"):
70
- w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
71
- elif i>0 and w[i-1]["end"]>w[i]["start"]:
72
- w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
73
- elif p.startswith("B-"):
74
- t["entity_group"]=p[2:]
75
- else:
76
- t["entity_group"]=p
77
- d=[model_outputs["sentence"][t["start"]:t["end"]] for t in w]
78
  v=self.tokenizer(d,add_special_tokens=False)
79
  e=self.model.get_input_embeddings().weight
80
  m=[]
@@ -95,11 +82,11 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
95
  for j in range(i):
96
  e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
97
  e[-i-1,-i-1]=e[-i-1,0]+self.root
98
- m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
99
  h=self.chu_liu_edmonds(m)
100
  z=[i for i,j in enumerate(h) if i==j]
101
  if len(z)>1:
102
- k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
103
  m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
104
  h=self.chu_liu_edmonds(m)
105
  q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
@@ -109,7 +96,7 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
109
  u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
110
  return u+"\n"
111
  def chu_liu_edmonds(self,matrix):
112
- h=numpy.nanargmax(matrix,axis=0)
113
  x=[-1 if i==j else j for i,j in enumerate(h)]
114
  for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
115
  y=[]
@@ -120,10 +107,10 @@ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline
120
  if max(x)<0:
121
  return h
122
  y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
123
- z=matrix-numpy.nanmax(matrix,axis=0)
124
- m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
125
- k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
126
  h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
127
- i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
128
  h[i]=x[k[-1]] if k[-1]<len(x) else i
129
  return h
 
6
  super().__init__(**kwargs)
7
  x=self.model.config.label2id
8
  y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
9
+ self.transition=numpy.full((len(x),len(x)),-numpy.inf)
10
  for k,v in x.items():
11
  for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
12
  self.transition[v,x[j]]=0
 
15
  def postprocess(self,model_outputs,**kwargs):
16
  if "logits" not in model_outputs:
17
  return self.postprocess(model_outputs[0],**kwargs)
18
+ return self.bellman_ford_token_classification(model_outputs,**kwargs)
19
+ def bellman_ford_token_classification(self,model_outputs,**kwargs):
20
  m=model_outputs["logits"][0].numpy()
21
  e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
22
  z=e/e.sum(axis=-1,keepdims=True)
23
  for i in range(m.shape[0]-1,0,-1):
24
+ m[i-1]+=numpy.max(m[i]+self.transition,axis=1)
25
+ k=[numpy.argmax(m[0]+self.transition[0])]
26
  for i in range(1,m.shape[0]):
27
+ k.append(numpy.argmax(m[i]+self.transition[k[-1]]))
28
  w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
29
  if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
30
  for i,t in reversed(list(enumerate(w))):
 
45
  kwargs["aggregation_strategy"]="simple"
46
  super().__init__(**kwargs)
47
  x=self.model.config.label2id
48
+ self.root=numpy.full((len(x)),-numpy.inf)
49
+ self.left_arc=numpy.full((len(x)),-numpy.inf)
50
+ self.right_arc=numpy.full((len(x)),-numpy.inf)
51
  for k,v in x.items():
52
  if k.endswith("|root"):
53
  self.root[v]=0
 
57
  self.right_arc[v]=0
58
  def postprocess(self,model_outputs,**kwargs):
59
  import torch
60
+ kwargs["aggregation_strategy"]="simple"
61
  if "logits" not in model_outputs:
62
  return self.postprocess(model_outputs[0],**kwargs)
63
+ w=self.bellman_ford_token_classification(model_outputs,**kwargs)
64
+ d=[t["text"] for t in w]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  v=self.tokenizer(d,add_special_tokens=False)
66
  e=self.model.get_input_embeddings().weight
67
  m=[]
 
82
  for j in range(i):
83
  e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
84
  e[-i-1,-i-1]=e[-i-1,0]+self.root
85
+ m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
86
  h=self.chu_liu_edmonds(m)
87
  z=[i for i,j in enumerate(h) if i==j]
88
  if len(z)>1:
89
+ k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
90
  m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
91
  h=self.chu_liu_edmonds(m)
92
  q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
 
96
  u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
97
  return u+"\n"
98
  def chu_liu_edmonds(self,matrix):
99
+ h=numpy.argmax(matrix,axis=0)
100
  x=[-1 if i==j else j for i,j in enumerate(h)]
101
  for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
102
  y=[]
 
107
  if max(x)<0:
108
  return h
109
  y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
110
+ z=matrix-numpy.max(matrix,axis=0)
111
+ m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
112
+ k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
113
  h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
114
+ i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
115
  h[i]=x[k[-1]] if k[-1]<len(x) else i
116
  return h