File size: 1,350 Bytes
37eaef1 80c10e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
language:
- "ja"
tags:
- "japanese"
- "token-classification"
- "pos"
base_model: KoichiYasuoka/modernbert-base-japanese-aozora
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
widget:
- text: "国境の長いトンネルを抜けると雪国であった。"
---
# modernbert-base-japanese-aozora-upos
## Model Description
This is a ModernBERT model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [modernbert-base-japanese-aozora](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-aozora). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
## How to Use
```py
from transformers import pipeline
nlp=pipeline("upos","KoichiYasuoka/modernbert-base-japanese-aozora-upos",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/modernbert-base-japanese-aozora-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models
|