KoichiYasuoka
commited on
Commit
·
83c8777
1
Parent(s):
30c3ae5
initial release
Browse files- README.md +26 -0
- config.json +23 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "lzh"
|
4 |
+
tags:
|
5 |
+
- "classical chinese"
|
6 |
+
- "literary chinese"
|
7 |
+
- "ancient chinese"
|
8 |
+
license: "apache-2.0"
|
9 |
+
pipeline_tag: "fill-mask"
|
10 |
+
widget:
|
11 |
+
- text: "孟子[MASK]梁惠王"
|
12 |
+
---
|
13 |
+
|
14 |
+
# roberta-classical-chinese-large-char
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
This is a RoBERTa model pre-trained on Classical Chinese texts, derived from [GuwenBERT-large](https://huggingface.co/ethanyt/guwenbert-large). Character-embeddings are enhanced into traditional/simplified characters. You can fine-tune `roberta-classical-chinese-large-char` for downstream tasks, such as sentencization, POS-tagging, dependency-parsing, and so on.
|
19 |
+
|
20 |
+
## How to Use
|
21 |
+
|
22 |
+
```py
|
23 |
+
from transformers import AutoTokenizer,AutoModel
|
24 |
+
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char")
|
25 |
+
model=AutoModel.from_pretrained("KoichiYasuoka/roberta-classical-chinese-large-char")
|
26 |
+
```
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "roberta",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"tokenizer_class": "BertTokenizer",
|
21 |
+
"type_vocab_size": 1,
|
22 |
+
"vocab_size": 26318
|
23 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b86e31db88d1346640833ddddb45da032d98bc62d005abbb980046a57361d1ad
|
3 |
+
size 1323629438
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "ethanyt/guwenbert-large", "do_basic_tokenize": true, "never_split": null}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|