KoichiYasuoka commited on
Commit
d213137
·
1 Parent(s): 6e0d791

without ufal.chu-liu.edmonds

Browse files
Files changed (1) hide show
  1. README.md +0 -46
README.md CHANGED
@@ -24,52 +24,6 @@ This is a RoBERTa model pre-trained on Korean texts for POS-tagging and dependen
24
 
25
  ## How to Use
26
 
27
- ```py
28
- class UDgoeswith(object):
29
- def __init__(self,bert):
30
- from transformers import AutoTokenizer,AutoModelForTokenClassification
31
- self.tokenizer=AutoTokenizer.from_pretrained(bert)
32
- self.model=AutoModelForTokenClassification.from_pretrained(bert)
33
- def __call__(self,text):
34
- import numpy,torch,ufal.chu_liu_edmonds
35
- w=self.tokenizer(text,return_offsets_mapping=True)
36
- v=w["input_ids"]
37
- x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)]
38
- with torch.no_grad():
39
- e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:]
40
- r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
41
- e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
42
- g=self.model.config.label2id["X|_|goeswith"]
43
- r=numpy.tri(e.shape[0])
44
- for i in range(e.shape[0]):
45
- for j in range(i+2,e.shape[1]):
46
- r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
47
- e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
48
- m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan)
49
- m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
50
- p=numpy.zeros(m.shape)
51
- p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
52
- for i in range(1,m.shape[0]):
53
- m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
54
- h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
55
- if [0 for i in h if i==0]!=[0]:
56
- m[:,0]+=numpy.where(m[:,0]==numpy.nanmax(m[[i for i,j in enumerate(h) if j==0],0]),0,numpy.nan)
57
- m[[i for i,j in enumerate(h) if j==0]]+=[0 if i==0 or j==0 else numpy.nan for i,j in enumerate(h)]
58
- h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
59
- u="# text = "+text+"\n"
60
- v=[(s,e) for s,e in w["offset_mapping"] if s<e]
61
- for i,(s,e) in enumerate(v,1):
62
- q=self.model.config.id2label[p[i,h[i]]].split("|")
63
- u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
64
- return u+"\n"
65
-
66
- nlp=UDgoeswith("KoichiYasuoka/roberta-large-korean-ud-goeswith")
67
- print(nlp("홍시 맛이 나서 홍시라 생각한다."))
68
- ```
69
-
70
- with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/).
71
- Or without ufal.chu-liu-edmonds:
72
-
73
  ```
74
  from transformers import pipeline
75
  nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-large-korean-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
 
24
 
25
  ## How to Use
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ```
28
  from transformers import pipeline
29
  nlp=pipeline("universal-dependencies","KoichiYasuoka/roberta-large-korean-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")