wujunqiang commited on
Commit
deb71be
·
verified ·
1 Parent(s): 1fd8579

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -20
README.md CHANGED
@@ -10,7 +10,6 @@ library_name: diffusers
10
  ---
11
 
12
 
13
-
14
  Kolors-ControlNet-Canny weights and inference code
15
 
16
 
@@ -24,21 +23,12 @@ We provide two ControlNet weights and inference code based on Kolors-Basemodel:
24
  <img src="demo1.png">
25
 
26
 
27
-
28
-
29
  **2、ControlNet and IP-Adapter-Plus Demos**
30
 
31
  We also support joint inference code between Kolors-IPadapter and Kolors-ControlNet.
32
 
33
-
34
  <img src="demo2.png">
35
 
36
- <br>
37
-
38
-
39
- <br>
40
-
41
-
42
  ## <a name="Evaluation"></a>📊 Evaluation
43
  To evaluate the performance of models, we compiled a test set of more than 200 images and text prompts. We invite several image experts to provide fair ratings for the generated results of different models. The experts rate the generated images based on four criteria: visual appeal, text faithfulness, conditional controllability, and overall satisfaction. Conditional controllability measures controlnet's ability to preserve spatial structure, while the other criteria follow the evaluation standards of BaseModel. The specific results are summarized in the table below, where Kolors-ControlNet achieved better performance in various criterias.
44
 
@@ -58,15 +48,12 @@ To evaluate the performance of models, we compiled a test set of more than 200 i
58
  | SDXL-ControlNet-Canny | 3.35 | 3.77 | 4.26 | 4.5 |
59
  | **Kolors-ControlNet-Depth** | **4.12** | **4.12** | **4.62** | **4.6** |
60
 
61
-
62
- <font color=gray style="font-size:12px">*The [SDXL-ControlNet-Canny](https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0) and [SDXL-ControlNet-Depth](https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0) load [DreamShaper-XL](https://civitai.com/models/112902?modelVersionId=351306) as backbone model.*</font>
63
-
64
  <img src="compare_demo.png">
65
 
 
66
 
67
  ------
68
 
69
-
70
  ## <a name="Usage"></a>🛠️ Usage
71
 
72
  ### Requirements
@@ -115,7 +102,6 @@ python ./controlnet/sample_controlNet.py ./controlnet/assets/bird.png 一只颜
115
  ```
116
 
117
 
118
-
119
  **c. Using depth ControlNet + IP-Adapter-Plus:**
120
 
121
  If you intend to utilize the kolors-ip-adapter-plus, please ensure to download its corresponding model weights.
@@ -126,13 +112,8 @@ python ./controlnet/sample_controlNet_ipadapter.py ./controlnet/assets/woman_2.p
126
  # The image will be saved to "controlnet/outputs/"
127
  ```
128
 
129
- <br>
130
-
131
-
132
  ### Acknowledgments
133
  - Thanks to [ControlNet](https://github.com/lllyasviel/ControlNet) for providing the codebase.
134
 
135
  <br>
136
 
137
-
138
-
 
10
  ---
11
 
12
 
 
13
  Kolors-ControlNet-Canny weights and inference code
14
 
15
 
 
23
  <img src="demo1.png">
24
 
25
 
 
 
26
  **2、ControlNet and IP-Adapter-Plus Demos**
27
 
28
  We also support joint inference code between Kolors-IPadapter and Kolors-ControlNet.
29
 
 
30
  <img src="demo2.png">
31
 
 
 
 
 
 
 
32
  ## <a name="Evaluation"></a>📊 Evaluation
33
  To evaluate the performance of models, we compiled a test set of more than 200 images and text prompts. We invite several image experts to provide fair ratings for the generated results of different models. The experts rate the generated images based on four criteria: visual appeal, text faithfulness, conditional controllability, and overall satisfaction. Conditional controllability measures controlnet's ability to preserve spatial structure, while the other criteria follow the evaluation standards of BaseModel. The specific results are summarized in the table below, where Kolors-ControlNet achieved better performance in various criterias.
34
 
 
48
  | SDXL-ControlNet-Canny | 3.35 | 3.77 | 4.26 | 4.5 |
49
  | **Kolors-ControlNet-Depth** | **4.12** | **4.12** | **4.62** | **4.6** |
50
 
 
 
 
51
  <img src="compare_demo.png">
52
 
53
+ <font color=gray style="font-size:12px">*The [SDXL-ControlNet-Canny](https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0) and [SDXL-ControlNet-Depth](https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0) load [DreamShaper-XL](https://civitai.com/models/112902?modelVersionId=351306) as backbone model.*</font>
54
 
55
  ------
56
 
 
57
  ## <a name="Usage"></a>🛠️ Usage
58
 
59
  ### Requirements
 
102
  ```
103
 
104
 
 
105
  **c. Using depth ControlNet + IP-Adapter-Plus:**
106
 
107
  If you intend to utilize the kolors-ip-adapter-plus, please ensure to download its corresponding model weights.
 
112
  # The image will be saved to "controlnet/outputs/"
113
  ```
114
 
 
 
 
115
  ### Acknowledgments
116
  - Thanks to [ControlNet](https://github.com/lllyasviel/ControlNet) for providing the codebase.
117
 
118
  <br>
119