DJCan commited on
Commit
ec80eb7
1 Parent(s): c2b8198

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -11
README.md CHANGED
@@ -22,25 +22,35 @@ Kolors is a large-scale text-to-image generation model based on latent diffusion
22
 
23
  ## 🚀 Quick Start
24
  ### Using with Diffusers
25
- Make sure you upgrade to the latest version of diffusers: `pip install -U diffusers`. And then you can run:
 
 
 
 
 
 
 
 
 
 
26
  ```python
27
  import torch
 
28
  from diffusers import KolorsPipeline
29
 
30
  pipe = KolorsPipeline.from_pretrained(
31
- "Kwai-Kolors/Kolors-diffusers",
32
- torch_dtype=torch.float16,
33
- variant='fp16',
34
- trust_remote_code=True,
35
- force_zeros_for_empty_prompt=False,)
36
- pipe = pipe.to("cuda")
37
 
38
  image = pipe(
39
- "一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着“可图”",
40
- height=1024,
41
- width=1024,
42
- num_inference_steps=50,
43
  guidance_scale=5.0,
 
44
  generator=torch.Generator(pipe.device).manual_seed(66),
45
  ).images[0]
46
  image.show()
 
22
 
23
  ## 🚀 Quick Start
24
  ### Using with Diffusers
25
+ Make sure you upgrade to the latest version of diffusers==0.30.0.dev0:
26
+ ```
27
+ git clone https://github.com/huggingface/diffusers
28
+ cd diffusers
29
+ python3 setup.py install
30
+ ```
31
+ **Notes:**
32
+ - The pipeline uses the `EulerDiscreteScheduler` by default. We recommend using this scheduler with `guidance scale=5.0` and `num_inference_steps=50`.
33
+ - The pipeline also supports the `EDMDPMSolverMultistepScheduler`. `guidance scale=5.0` and `num_inference_steps=25` is a good default for this scheduler.
34
+
35
+ And then you can run:
36
  ```python
37
  import torch
38
+
39
  from diffusers import KolorsPipeline
40
 
41
  pipe = KolorsPipeline.from_pretrained(
42
+ "Kwai-Kolors/Kolors-diffusers",
43
+ torch_dtype=torch.float16,
44
+ variant="fp16"
45
+ ).to("cuda")
46
+
47
+ prompt = '一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着"可图"'
48
 
49
  image = pipe(
50
+ prompt=prompt,
51
+ negative_prompt="",
 
 
52
  guidance_scale=5.0,
53
+ num_inference_steps=50,
54
  generator=torch.Generator(pipe.device).manual_seed(66),
55
  ).images[0]
56
  image.show()