File size: 10,174 Bytes
6d116d1 477e235 6d116d1 4c240bd 6d116d1 79b68bc 6d116d1 2d03940 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 2d03940 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 4c240bd 6d116d1 477e235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
license: mit
library_name: liveportrait
---
<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>
<div align='center'>
<a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1β </sup> 
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup> 
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup> 
<a href='https://scholar.google.com/citations?user=t88nyvsAAAAJ&hl' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup> 
<a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup> 
</div>
<div align='center'>
<a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup> 
<a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup> 
</div>
<div align='center'>
<sup>1 </sup>Kuaishou Technology  <sup>2 </sup>University of Science and Technology of China  <sup>3 </sup>Fudan University 
</div>
<br>
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
<a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
</div>
<br>
<p align="center">
<img src="./docs/showcase2.gif" alt="showcase">
<br>
π₯ For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> π₯
</p>
## π₯ Updates
- **`2024/07/10`**: πͺ We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](docs/changelog/2024-07-10.md).
- **`2024/07/09`**: π€ We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!
- **`2024/07/04`**: π We released the initial version of the inference code and models. Continuous updates, stay tuned!
- **`2024/07/04`**: π₯ We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).
## Introduction
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) π.
## π₯ Getting Started
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait
# create env using conda
conda create -n LivePortrait python==3.9.18
conda activate LivePortrait
# install dependencies with pip
pip install -r requirements.txt
```
**Note:** make sure your system has [FFmpeg](https://ffmpeg.org/) installed!
### 2. Download pretrained weights
The easiest way to download the pretrained weights is from HuggingFace:
```bash
# you may need to run `git lfs install` first
git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights
```
Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.
Ensuring the directory structure is as follows, or contains:
```text
pretrained_weights
βββ insightface
β βββ models
β βββ buffalo_l
β βββ 2d106det.onnx
β βββ det_10g.onnx
βββ liveportrait
βββ base_models
β βββ appearance_feature_extractor.pth
β βββ motion_extractor.pth
β βββ spade_generator.pth
β βββ warping_module.pth
βββ landmark.onnx
βββ retargeting_models
βββ stitching_retargeting_module.pth
```
### 3. Inference π
#### Fast hands-on
```bash
python inference.py
```
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
<p align="center">
<img src="./docs/inference.gif" alt="image">
</p>
Or, you can change the input by specifying the `-s` and `-d` arguments:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
# disable pasting back to run faster
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
# more options to see
python inference.py -h
```
#### Driving video auto-cropping
π To use your own driving video, we **recommend**:
- Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
- Focus on the head area, similar to the example videos.
- Minimize shoulder movement.
- Make sure the first frame of driving video is a frontal face with **neutral expression**.
Below is a auto-cropping case by `--flag_crop_driving_video`:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
```
If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually.
#### Motion template making
You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl
```
**Discover more interesting results on our [Homepage](https://liveportrait.github.io)** π
### 4. Gradio interface π€
We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by:
```bash
python app.py
```
You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!
π We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
```bash
# enable torch.compile for faster inference
python app.py --flag_do_torch_compile
```
**Note**: This method has not been fully tested. e.g., on Windows.
**Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) π€**
### 5. Inference speed evaluation πππ
We have also provided a script to evaluate the inference speed of each module:
```bash
python speed.py
```
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
|-----------------------------------|:-------------:|:--------------:|:-------------:|
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
| Motion Extractor | 28.12 | 108 | 0.84 |
| Spade Generator | 55.37 | 212 | 7.59 |
| Warping Module | 45.53 | 174 | 5.21 |
| Stitching and Retargeting Modules | 0.23 | 2.3 | 0.31 |
*Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*
## Community Resources π€
Discover the invaluable resources contributed by our community to enhance your LivePortrait experience:
- [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) by [@kijai](https://github.com/kijai)
- [comfyui-liveportrait](https://github.com/shadowcz007/comfyui-liveportrait) by [@shadowcz007](https://github.com/shadowcz007)
- [LivePortrait hands-on tutorial](https://www.youtube.com/watch?v=uyjSTAOY7yI) by [@AI Search](https://www.youtube.com/@theAIsearch)
- [ComfyUI tutorial](https://www.youtube.com/watch?v=8-IcDDmiUMM) by [@Sebastian Kamph](https://www.youtube.com/@sebastiankamph)
- [LivePortrait In ComfyUI](https://www.youtube.com/watch?v=aFcS31OWMjE) by [@Benji](https://www.youtube.com/@TheFutureThinker)
- [Replicate Playground](https://replicate.com/fofr/live-portrait) and [cog-comfyui](https://github.com/fofr/cog-comfyui) by [@fofr](https://github.com/fofr)
And many more amazing contributions from our community!
## Acknowledgements
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
## Citation π
If you find LivePortrait useful for your research, welcome to π this repo and cite our work using the following BibTeX:
```bibtex
@article{guo2024liveportrait,
title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di},
journal = {arXiv preprint arXiv:2407.03168},
year = {2024}
}
``` |