LivePortrait
ONNX
File size: 10,174 Bytes
6d116d1
 
477e235
6d116d1
 
 
 
 
 
 
 
4c240bd
6d116d1
 
 
 
 
 
 
 
 
 
 
 
 
79b68bc
6d116d1
 
 
 
 
 
 
 
2d03940
6d116d1
 
 
 
 
 
 
4c240bd
 
 
 
 
 
6d116d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c240bd
 
6d116d1
4c240bd
 
 
 
 
 
 
 
 
 
6d116d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c240bd
6d116d1
 
 
 
 
 
 
2d03940
6d116d1
 
 
 
 
 
 
4c240bd
6d116d1
 
 
 
 
 
4c240bd
 
 
 
 
 
 
6d116d1
4c240bd
 
 
 
6d116d1
4c240bd
 
 
 
 
 
 
 
 
 
 
 
 
6d116d1
 
 
 
 
4c240bd
 
 
 
 
 
 
 
 
 
 
6d116d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c240bd
 
 
 
 
 
 
6d116d1
4c240bd
 
 
 
 
 
6d116d1
4c240bd
6d116d1
 
 
 
 
 
 
4c240bd
6d116d1
4c240bd
 
 
6d116d1
477e235
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
license: mit
library_name: liveportrait
---

<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>

<div align='center'>
    <a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1†</sup>&emsp;
    <a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup>&emsp;
    <a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>&emsp;
    <a href='https://scholar.google.com/citations?user=t88nyvsAAAAJ&hl' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>&emsp;
    <a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>&emsp;
</div>

<div align='center'>
    <a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>&emsp;
    <a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>&emsp;
</div>

<div align='center'>
    <sup>1 </sup>Kuaishou Technology&emsp; <sup>2 </sup>University of Science and Technology of China&emsp; <sup>3 </sup>Fudan University&emsp;
</div>

<br>
<div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
  <!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
  <a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
  <a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
  <a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
</div>
<br>

<p align="center">
  <img src="./docs/showcase2.gif" alt="showcase">
  <br>
  πŸ”₯ For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> πŸ”₯
</p>



## πŸ”₯ Updates
- **`2024/07/10`**: πŸ’ͺ We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](docs/changelog/2024-07-10.md).
- **`2024/07/09`**: πŸ€— We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!
- **`2024/07/04`**: 😊 We released the initial version of the inference code and models. Continuous updates, stay tuned!
- **`2024/07/04`**: πŸ”₯ We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).



## Introduction
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) πŸ’–.

## πŸ”₯ Getting Started
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait

# create env using conda
conda create -n LivePortrait python==3.9.18
conda activate LivePortrait
# install dependencies with pip
pip install -r requirements.txt
```

**Note:** make sure your system has [FFmpeg](https://ffmpeg.org/) installed!

### 2. Download pretrained weights

The easiest way to download the pretrained weights is from HuggingFace:
```bash
# you may need to run `git lfs install` first
git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights
```

Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.

Ensuring the directory structure is as follows, or contains:
```text
pretrained_weights
β”œβ”€β”€ insightface
β”‚   └── models
β”‚       └── buffalo_l
β”‚           β”œβ”€β”€ 2d106det.onnx
β”‚           └── det_10g.onnx
└── liveportrait
    β”œβ”€β”€ base_models
    β”‚   β”œβ”€β”€ appearance_feature_extractor.pth
    β”‚   β”œβ”€β”€ motion_extractor.pth
    β”‚   β”œβ”€β”€ spade_generator.pth
    β”‚   └── warping_module.pth
    β”œβ”€β”€ landmark.onnx
    └── retargeting_models
        └── stitching_retargeting_module.pth
```

### 3. Inference πŸš€

#### Fast hands-on
```bash
python inference.py
```

If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.

<p align="center">
  <img src="./docs/inference.gif" alt="image">
</p>

Or, you can change the input by specifying the `-s` and `-d` arguments:

```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4

# disable pasting back to run faster
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback

# more options to see
python inference.py -h
```

#### Driving video auto-cropping

πŸ“• To use your own driving video, we **recommend**:
 - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
 - Focus on the head area, similar to the example videos.
 - Minimize shoulder movement.
 - Make sure the first frame of driving video is a frontal face with **neutral expression**.

Below is a auto-cropping case by `--flag_crop_driving_video`:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
```

If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually.

#### Motion template making
You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl
```

**Discover more interesting results on our [Homepage](https://liveportrait.github.io)** 😊

### 4. Gradio interface πŸ€—

We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by:

```bash
python app.py
```

You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!

πŸš€ We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
```bash
# enable torch.compile for faster inference
python app.py --flag_do_torch_compile
```
**Note**: This method has not been fully tested. e.g., on Windows.

**Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) πŸ€—**

### 5. Inference speed evaluation πŸš€πŸš€πŸš€
We have also provided a script to evaluate the inference speed of each module:

```bash
python speed.py
```

Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:

| Model                             | Parameters(M) | Model Size(MB) | Inference(ms) |
|-----------------------------------|:-------------:|:--------------:|:-------------:|
| Appearance Feature Extractor      |     0.84      |       3.3      |     0.82      |
| Motion Extractor                  |     28.12     |       108      |     0.84      |
| Spade Generator                   |     55.37     |       212      |     7.59      |
| Warping Module                    |     45.53     |       174      |     5.21      |
| Stitching and Retargeting Modules |     0.23      |       2.3      |     0.31      |

*Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*

## Community Resources πŸ€—

Discover the invaluable resources contributed by our community to enhance your LivePortrait experience:

- [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) by [@kijai](https://github.com/kijai)
- [comfyui-liveportrait](https://github.com/shadowcz007/comfyui-liveportrait) by [@shadowcz007](https://github.com/shadowcz007)
- [LivePortrait hands-on tutorial](https://www.youtube.com/watch?v=uyjSTAOY7yI) by [@AI Search](https://www.youtube.com/@theAIsearch)
- [ComfyUI tutorial](https://www.youtube.com/watch?v=8-IcDDmiUMM) by [@Sebastian Kamph](https://www.youtube.com/@sebastiankamph)
- [LivePortrait In ComfyUI](https://www.youtube.com/watch?v=aFcS31OWMjE) by [@Benji](https://www.youtube.com/@TheFutureThinker)
- [Replicate Playground](https://replicate.com/fofr/live-portrait) and [cog-comfyui](https://github.com/fofr/cog-comfyui) by [@fofr](https://github.com/fofr)

And many more amazing contributions from our community!

## Acknowledgements
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.

## Citation πŸ’–
If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
```bibtex
@article{guo2024liveportrait,
  title   = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
  author  = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di},
  journal = {arXiv preprint arXiv:2407.03168},
  year    = {2024}
}
```