Update README.md
Browse files
README.md
CHANGED
@@ -1,54 +1,78 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
tags:
|
5 |
-
-
|
6 |
-
metrics:
|
7 |
-
- accuracy
|
8 |
-
model-index:
|
9 |
-
- name: nusabert-base
|
10 |
-
results: []
|
11 |
---
|
12 |
|
13 |
-
|
14 |
-
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
- Accuracy: 0.6866
|
22 |
|
23 |
-
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
-
|
42 |
-
-
|
43 |
-
-
|
44 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
-
- lr_scheduler_type: linear
|
46 |
-
- lr_scheduler_warmup_steps: 24000
|
47 |
-
- training_steps: 500000
|
48 |
|
49 |
-
|
50 |
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
### Framework versions
|
54 |
|
@@ -56,3 +80,25 @@ The following hyperparameters were used during training:
|
|
56 |
- Pytorch 2.2.0+cu118
|
57 |
- Datasets 2.17.1
|
58 |
- Tokenizers 0.15.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- ind
|
5 |
+
- ace
|
6 |
+
- ban
|
7 |
+
- bjn
|
8 |
+
- bug
|
9 |
+
- gor
|
10 |
+
- jav
|
11 |
+
- min
|
12 |
+
- msa
|
13 |
+
- nia
|
14 |
+
- sun
|
15 |
+
- tet
|
16 |
+
language_bcp47:
|
17 |
+
- jv-x-bms
|
18 |
+
datasets:
|
19 |
+
- sabilmakbar/indo_wiki
|
20 |
+
- acul3/KoPI-NLLB
|
21 |
+
- uonlp/CulturaX
|
22 |
tags:
|
23 |
+
- bert
|
|
|
|
|
|
|
|
|
|
|
24 |
---
|
25 |
|
26 |
+
# NusaBERT Base
|
|
|
27 |
|
28 |
+
NusaBERT Base is a multilingual encoder-based language model based on the [BERT](https://arxiv.org/abs/1810.04805) architecture. We conducted continued pre-training on open-source corpora of [sabilmakbar/indo_wiki](https://huggingface.co/datasets/sabilmakbar/indo_wiki), [acul3/KoPI-NLLB](https://huggingface.co/datasets/acul3/KoPI-NLLB), and [uonlp/CulturaX](https://huggingface.co/datasets/uonlp/CulturaX). On a held-out subset of the corpus, our model achieved:
|
29 |
|
30 |
+
- `eval_accuracy`: 0.6866
|
31 |
+
- `eval_loss`: 1.4876
|
32 |
+
- `perplexity`: 4.4266
|
|
|
33 |
|
34 |
+
This model was trained using the [🤗Transformers](https://github.com/huggingface/transformers) PyTorch framework. All training was done on an NVIDIA H100 GPU. [LazarusNLP/NusaBERT-base](https://huggingface.co/LazarusNLP/NusaBERT-base) is released under Apache 2.0 license.
|
35 |
|
36 |
+
## Model Detail
|
37 |
|
38 |
+
- **Developed by**: [LazarusNLP](https://lazarusnlp.github.io/)
|
39 |
+
- **Finetuned from**: [IndoBERT base p1](https://huggingface.co/indobenchmark/indobert-base-p1)
|
40 |
+
- **Model type**: Encoder-based BERT language model
|
41 |
+
- **Language(s)**: Indonesian, Acehnese, Balinese, Banjarese, Buginese, Gorontalo, Javanese, Banyumasan, Minangkabau, Malay, Nias, Sundanese, Tetum
|
42 |
+
- **License**: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
|
43 |
+
- **Contact**: [LazarusNLP](https://lazarusnlp.github.io/)
|
44 |
|
45 |
+
## Use in 🤗Transformers
|
46 |
|
47 |
+
```python
|
48 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
49 |
|
50 |
+
model_checkpoint = "LazarusNLP/NusaBERT-base"
|
51 |
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
53 |
+
model = AutoModelForMaskedLM.from_pretrained(model_checkpoint)
|
54 |
+
```
|
55 |
|
56 |
+
## Training Datasets
|
57 |
|
58 |
+
Around 16B tokens from the following corpora were used during pre-training.
|
59 |
+
|
60 |
+
- [Indonesian Wikipedia Data Repository](https://huggingface.co/datasets/sabilmakbar/indo_wiki)
|
61 |
+
- [KoPI-NLLB (Korpus Perayapan Indonesia)](https://huggingface.co/datasets/acul3/KoPI-NLLB)
|
62 |
+
- [Cleaned, Enormous, and Public: The Multilingual Fuel to Democratize Large Language Models for 167 Languages](https://huggingface.co/datasets/uonlp/CulturaX)
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
## Training Hyperparameters
|
65 |
|
66 |
+
The following hyperparameters were used during training:
|
67 |
|
68 |
+
- `learning_rate`: 0.0003
|
69 |
+
- `train_batch_size`: 256
|
70 |
+
- `eval_batch_size`: 256
|
71 |
+
- `seed`: 42
|
72 |
+
- `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08`
|
73 |
+
- `lr_scheduler_type`: linear
|
74 |
+
- `lr_scheduler_warmup_steps`: 24000
|
75 |
+
- `training_steps`: 500000
|
76 |
|
77 |
### Framework versions
|
78 |
|
|
|
80 |
- Pytorch 2.2.0+cu118
|
81 |
- Datasets 2.17.1
|
82 |
- Tokenizers 0.15.1
|
83 |
+
|
84 |
+
## Credits
|
85 |
+
|
86 |
+
NusaBERT Base is developed with love by:
|
87 |
+
|
88 |
+
<div style="display: flex;">
|
89 |
+
<a href="https://github.com/anantoj">
|
90 |
+
<img src="https://github.com/anantoj.png" alt="GitHub Profile" style="border-radius: 50%;width: 64px;margin:0 4px;">
|
91 |
+
</a>
|
92 |
+
|
93 |
+
<a href="https://github.com/DavidSamuell">
|
94 |
+
<img src="https://github.com/DavidSamuell.png" alt="GitHub Profile" style="border-radius: 50%;width: 64px;margin:0 4px;">
|
95 |
+
</a>
|
96 |
+
|
97 |
+
<a href="https://github.com/stevenlimcorn">
|
98 |
+
<img src="https://github.com/stevenlimcorn.png" alt="GitHub Profile" style="border-radius: 50%;width: 64px;margin:0 4px;">
|
99 |
+
</a>
|
100 |
+
|
101 |
+
<a href="https://github.com/w11wo">
|
102 |
+
<img src="https://github.com/w11wo.png" alt="GitHub Profile" style="border-radius: 50%;width: 64px;margin:0 4px;">
|
103 |
+
</a>
|
104 |
+
</div>
|