Leotrim commited on
Commit
2e149ad
·
verified ·
1 Parent(s): 31be023

End of training

Browse files
Files changed (2) hide show
  1. README.md +102 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: distilhubert-finetuned-gtzan
15
+ results:
16
+ - task:
17
+ name: Audio Classification
18
+ type: audio-classification
19
+ dataset:
20
+ name: GTZAN
21
+ type: marsyas/gtzan
22
+ config: all
23
+ split: train
24
+ args: all
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.7733333333333333
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.775454513809777
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.7733333333333333
35
+ - name: F1
36
+ type: f1
37
+ value: 0.7708532203254443
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/raspuntinov_ai/huggingface/runs/xti2wn9w)
44
+ # distilhubert-finetuned-gtzan
45
+
46
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.7448
49
+ - Accuracy: 0.7733
50
+ - Precision: 0.7755
51
+ - Recall: 0.7733
52
+ - F1: 0.7709
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 8
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 10
79
+ - mixed_precision_training: Native AMP
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
84
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
85
+ | 2.0182 | 1.0 | 88 | 2.0020 | 0.3333 | 0.3990 | 0.3333 | 0.2547 |
86
+ | 1.6019 | 2.0 | 176 | 1.4794 | 0.5333 | 0.6597 | 0.5333 | 0.4789 |
87
+ | 1.0733 | 3.0 | 264 | 1.2329 | 0.6133 | 0.6930 | 0.6133 | 0.5993 |
88
+ | 0.9451 | 4.0 | 352 | 1.1227 | 0.64 | 0.7214 | 0.64 | 0.6289 |
89
+ | 0.9232 | 5.0 | 440 | 0.9426 | 0.7133 | 0.7398 | 0.7133 | 0.7071 |
90
+ | 0.6552 | 6.0 | 528 | 0.8132 | 0.78 | 0.7795 | 0.78 | 0.7768 |
91
+ | 0.4019 | 7.0 | 616 | 0.8478 | 0.7333 | 0.7428 | 0.7333 | 0.7285 |
92
+ | 0.2836 | 8.0 | 704 | 0.7369 | 0.7933 | 0.8025 | 0.7933 | 0.7915 |
93
+ | 0.207 | 9.0 | 792 | 0.7440 | 0.7933 | 0.7926 | 0.7933 | 0.7879 |
94
+ | 0.3091 | 10.0 | 880 | 0.7448 | 0.7733 | 0.7755 | 0.7733 | 0.7709 |
95
+
96
+
97
+ ### Framework versions
98
+
99
+ - Transformers 4.42.3
100
+ - Pytorch 2.1.2
101
+ - Datasets 2.20.0
102
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8acbb8df96a517bf08ca6ed8eff59ba75a761a1e910d5886d12af4bf0cfa8213
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e396a5537e4a72663e4e7ce9975551567404c2ac974af34ba5927c8b15104447
3
  size 94771728