|
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict |
|
from packaging import version |
|
from transformers.auto.configuration_auto import AutoConfig |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
|
|
if TYPE_CHECKING: |
|
from ... import PreTrainedTokenizerBase, TensorType |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
""" Mistral model configuration""" |
|
|
|
|
|
|
|
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", |
|
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", |
|
} |
|
|
|
class EncoderDecoderConfig(PretrainedConfig): |
|
is_composition = True |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
if "encoder" not in kwargs or "decoder" not in kwargs: |
|
raise ValueError( |
|
f"A configuraton of type {self.model_type} cannot be instantiated because " |
|
f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" |
|
) |
|
|
|
encoder_config = kwargs.pop("encoder") |
|
encoder_model_type = encoder_config.pop("model_type") |
|
decoder_config = kwargs.pop("decoder") |
|
decoder_model_type = decoder_config.pop("model_type") |
|
|
|
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) |
|
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) |
|
self.is_encoder_decoder = True |
|
@classmethod |
|
def from_encoder_decoder_configs( |
|
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs |
|
) -> PretrainedConfig: |
|
r""" |
|
Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model |
|
configuration and decoder model configuration. |
|
|
|
Returns: |
|
[`SpeechEncoderDecoderConfig`]: An instance of a configuration object |
|
""" |
|
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
|
|
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) |
|
|
|
class VisionEncoderDecoderConfig(PretrainedConfig): |
|
r""" |
|
[`VisionEncoderDecoderConfig`] is the configuration class to store the configuration of a |
|
[`VisionEncoderDecoderModel`]. It is used to instantiate a Vision-Encoder-Text-Decoder model according to the |
|
specified arguments, defining the encoder and decoder configs. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. Notably: |
|
|
|
- **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines |
|
the encoder config. |
|
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines |
|
the decoder config. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel |
|
|
|
>>> # Initializing a ViT & BERT style configuration |
|
>>> config_encoder = ViTConfig() |
|
>>> config_decoder = BertConfig() |
|
|
|
>>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) |
|
|
|
>>> # Initializing a ViTBert model (with random weights) from a ViT & google-bert/bert-base-uncased style configurations |
|
>>> model = VisionEncoderDecoderModel(config=config) |
|
|
|
>>> # Accessing the model configuration |
|
>>> config_encoder = model.config.encoder |
|
>>> config_decoder = model.config.decoder |
|
>>> # set decoder config to causal lm |
|
>>> config_decoder.is_decoder = True |
|
>>> config_decoder.add_cross_attention = True |
|
|
|
>>> # Saving the model, including its configuration |
|
>>> model.save_pretrained("my-model") |
|
|
|
>>> # loading model and config from pretrained folder |
|
>>> encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model") |
|
>>> model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) |
|
```""" |
|
|
|
model_type = "vision-encoder-decoder" |
|
is_composition = True |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
if "encoder" not in kwargs or "decoder" not in kwargs: |
|
raise ValueError( |
|
f"A configuraton of type {self.model_type} cannot be instantiated because " |
|
f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" |
|
) |
|
|
|
encoder_config = kwargs.pop("encoder") |
|
encoder_model_type = encoder_config.pop("model_type") |
|
decoder_config = kwargs.pop("decoder") |
|
decoder_model_type = decoder_config.pop("model_type") |
|
|
|
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) |
|
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) |
|
self.is_encoder_decoder = True |
|
|
|
@classmethod |
|
def from_encoder_decoder_configs( |
|
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs |
|
) -> PretrainedConfig: |
|
r""" |
|
Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model |
|
configuration and decoder model configuration. |
|
|
|
Returns: |
|
[`VisionEncoderDecoderConfig`]: An instance of a configuration object |
|
""" |
|
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
|
|
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) |
|
|
|
class SpeechEncoderDecoderConfig(PretrainedConfig): |
|
r""" |
|
[`SpeechEncoderDecoderConfig`] is the configuration class to store the configuration of a |
|
[`SpeechEncoderDecoderModel`]. It is used to instantiate an Encoder Decoder model according to the specified |
|
arguments, defining the encoder and decoder configs. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. Notably: |
|
|
|
- **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines |
|
the encoder config. |
|
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines |
|
the decoder config. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel |
|
|
|
>>> # Initializing a Wav2Vec2 & BERT style configuration |
|
>>> config_encoder = Wav2Vec2Config() |
|
>>> config_decoder = BertConfig() |
|
|
|
>>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) |
|
|
|
>>> # Initializing a Wav2Vec2Bert model from a Wav2Vec2 & google-bert/bert-base-uncased style configurations |
|
>>> model = SpeechEncoderDecoderModel(config=config) |
|
|
|
>>> # Accessing the model configuration |
|
>>> config_encoder = model.config.encoder |
|
>>> config_decoder = model.config.decoder |
|
>>> # set decoder config to causal lm |
|
>>> config_decoder.is_decoder = True |
|
>>> config_decoder.add_cross_attention = True |
|
|
|
>>> # Saving the model, including its configuration |
|
>>> model.save_pretrained("my-model") |
|
|
|
>>> # loading model and config from pretrained folder |
|
>>> encoder_decoder_config = SpeechEncoderDecoderConfig.from_pretrained("my-model") |
|
>>> model = SpeechEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) |
|
```""" |
|
|
|
model_type = "speech-encoder-decoder" |
|
is_composition = True |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
if "encoder" not in kwargs or "decoder" not in kwargs: |
|
raise ValueError( |
|
f"A configuraton of type {self.model_type} cannot be instantiated because not both `encoder` and" |
|
f" `decoder` sub-configurations are passed, but only {kwargs}" |
|
) |
|
|
|
encoder_config = kwargs.pop("encoder") |
|
encoder_model_type = encoder_config.pop("model_type") |
|
decoder_config = kwargs.pop("decoder") |
|
decoder_model_type = decoder_config.pop("model_type") |
|
|
|
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) |
|
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) |
|
self.is_encoder_decoder = True |
|
|
|
@classmethod |
|
def from_encoder_decoder_configs( |
|
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs |
|
) -> PretrainedConfig: |
|
r""" |
|
Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model |
|
configuration and decoder model configuration. |
|
|
|
Returns: |
|
[`SpeechEncoderDecoderConfig`]: An instance of a configuration object |
|
""" |
|
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
|
|
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) |
|
|
|
class MistralConfig(PretrainedConfig): |
|
is_composition = True |
|
|
|
r""" |
|
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an |
|
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. |
|
|
|
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MistralModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
```python |
|
>>> from transformers import MistralModel, MistralConfig |
|
|
|
>>> # Initializing a Mistral 7B style configuration |
|
>>> configuration = MistralConfig() |
|
|
|
>>> # Initializing a model from the Mistral 7B style configuration |
|
>>> model = MistralModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = ["mistral","speech-encoder-decoder","image-encoder-decoder","mistral-encoder-decoder"] |
|
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
sliding_window=4096, |
|
attention_dropout=0.0, |
|
|
|
|
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
|
|
max_thoughts=16, |
|
max_temperature=10, |
|
complexity_factor = 0.5, |
|
merged_talk_heads=True, |
|
merged_lm_and_talk_heads=False, |
|
merged_lm_and_think_heads=True, |
|
use_concat_talk_head=True, |
|
use_shallow_think=True, |
|
use_shallow_talk=False, |
|
use_complex_think_head=False, |
|
use_complex_talk_head=True, |
|
use_weighted_talk_head=True, |
|
hidden_dropout_prob=0.00, |
|
|
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.attention_dropout = attention_dropout |
|
|
|
self.rope_scaling = rope_scaling |
|
self._rope_scaling_validation() |
|
self.rope_theta = rope_theta |
|
|
|
self.max_thoughts = max_thoughts |
|
self.complexity_factor = complexity_factor |
|
self.max_temperature = max_temperature |
|
self.merged_talk_heads = merged_talk_heads |
|
self.merged_lm_and_talk_heads = merged_lm_and_talk_heads |
|
self.merged_lm_and_think_heads = merged_lm_and_think_heads |
|
self.use_concat_talk_head = use_concat_talk_head |
|
self.use_shallow_think = use_shallow_think |
|
self.use_shallow_talk = use_shallow_talk |
|
self.use_complex_think_head = use_complex_think_head |
|
self.use_complex_talk_head = use_complex_talk_head |
|
self.use_weighted_talk_head = use_weighted_talk_head |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
|
|
if "encoder" not in kwargs or "decoder" not in kwargs: |
|
raise ValueError( |
|
f"A configuraton of type {self.model_type} cannot be instantiated because " |
|
f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" |
|
) |
|
|
|
encoder_config = kwargs.pop("encoder") |
|
encoder_model_type = encoder_config.pop("model_type") |
|
decoder_config = kwargs.pop("decoder") |
|
decoder_model_type = decoder_config.pop("model_type") |
|
|
|
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) |
|
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) |
|
self.is_encoder_decoder = True |
|
|
|
@classmethod |
|
def from_encoder_decoder_configs( |
|
cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs |
|
) -> PretrainedConfig: |
|
r""" |
|
Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model |
|
configuration and decoder model configuration. |
|
|
|
Returns: |
|
[`SpeechEncoderDecoderConfig`]: An instance of a configuration object |
|
""" |
|
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
|
|
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) |
|
|
|
def _rope_scaling_validation(self): |
|
""" |
|
Validate the `rope_scaling` configuration. |
|
""" |
|
if self.rope_scaling is None: |
|
return |
|
|
|
if not isinstance(self.rope_scaling, dict): |
|
raise ValueError( |
|
"`rope_scaling` must be a dictionary, " |
|
f"got {self.rope_scaling}" |
|
) |
|
rope_scaling_type = self.rope_scaling.get("type", None) |
|
rope_scaling_factor = self.rope_scaling.get("factor", None) |
|
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "yarn", "dynamic-yarn"]: |
|
raise ValueError( |
|
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}" |
|
) |
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: |
|
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") |
|
if rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn": |
|
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None) |
|
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int): |
|
raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using yarn, and dynamic-yarn") |