Mayfull commited on
Commit
61b0ce4
·
verified ·
1 Parent(s): 1565a80

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -2595
README.md CHANGED
@@ -2,2601 +2,6 @@
2
  tags:
3
  - transformers
4
  - mteb
5
- model-index:
6
- - name: Linq-Embed-Mistral
7
- results:
8
- - task:
9
- type: Classification
10
- dataset:
11
- type: mteb/amazon_counterfactual
12
- name: MTEB AmazonCounterfactualClassification (en)
13
- config: en
14
- split: test
15
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
16
- metrics:
17
- - type: accuracy
18
- value: 84.43283582089552
19
- - type: ap
20
- value: 50.39222584035829
21
- - type: f1
22
- value: 78.47906270064071
23
- - task:
24
- type: Classification
25
- dataset:
26
- type: mteb/amazon_polarity
27
- name: MTEB AmazonPolarityClassification
28
- config: default
29
- split: test
30
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
31
- metrics:
32
- - type: accuracy
33
- value: 95.70445
34
- - type: ap
35
- value: 94.28273900595173
36
- - type: f1
37
- value: 95.70048412173735
38
- - task:
39
- type: Classification
40
- dataset:
41
- type: mteb/amazon_reviews_multi
42
- name: MTEB AmazonReviewsClassification (en)
43
- config: en
44
- split: test
45
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
46
- metrics:
47
- - type: accuracy
48
- value: 57.644000000000005
49
- - type: f1
50
- value: 56.993648296704876
51
- - task:
52
- type: Retrieval
53
- dataset:
54
- type: mteb/arguana
55
- name: MTEB ArguAna
56
- config: default
57
- split: test
58
- revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
59
- metrics:
60
- - type: map_at_1
61
- value: 45.804
62
- - type: map_at_10
63
- value: 61.742
64
- - type: map_at_100
65
- value: 62.07899999999999
66
- - type: map_at_1000
67
- value: 62.08
68
- - type: map_at_3
69
- value: 57.717
70
- - type: map_at_5
71
- value: 60.27
72
- - type: mrr_at_1
73
- value: 47.226
74
- - type: mrr_at_10
75
- value: 62.256
76
- - type: mrr_at_100
77
- value: 62.601
78
- - type: mrr_at_1000
79
- value: 62.601
80
- - type: mrr_at_3
81
- value: 58.203
82
- - type: mrr_at_5
83
- value: 60.767
84
- - type: ndcg_at_1
85
- value: 45.804
86
- - type: ndcg_at_10
87
- value: 69.649
88
- - type: ndcg_at_100
89
- value: 70.902
90
- - type: ndcg_at_1000
91
- value: 70.91199999999999
92
- - type: ndcg_at_3
93
- value: 61.497
94
- - type: ndcg_at_5
95
- value: 66.097
96
- - type: precision_at_1
97
- value: 45.804
98
- - type: precision_at_10
99
- value: 9.452
100
- - type: precision_at_100
101
- value: 0.996
102
- - type: precision_at_1000
103
- value: 0.1
104
- - type: precision_at_3
105
- value: 24.135
106
- - type: precision_at_5
107
- value: 16.714000000000002
108
- - type: recall_at_1
109
- value: 45.804
110
- - type: recall_at_10
111
- value: 94.523
112
- - type: recall_at_100
113
- value: 99.57300000000001
114
- - type: recall_at_1000
115
- value: 99.644
116
- - type: recall_at_3
117
- value: 72.404
118
- - type: recall_at_5
119
- value: 83.57
120
- - task:
121
- type: Clustering
122
- dataset:
123
- type: mteb/arxiv-clustering-p2p
124
- name: MTEB ArxivClusteringP2P
125
- config: default
126
- split: test
127
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
128
- metrics:
129
- - type: v_measure
130
- value: 51.47612678878609
131
- - task:
132
- type: Clustering
133
- dataset:
134
- type: mteb/arxiv-clustering-s2s
135
- name: MTEB ArxivClusteringS2S
136
- config: default
137
- split: test
138
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
139
- metrics:
140
- - type: v_measure
141
- value: 47.2977392340418
142
- - task:
143
- type: Reranking
144
- dataset:
145
- type: mteb/askubuntudupquestions-reranking
146
- name: MTEB AskUbuntuDupQuestions
147
- config: default
148
- split: test
149
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
150
- metrics:
151
- - type: map
152
- value: 66.82016765243456
153
- - type: mrr
154
- value: 79.55227982236292
155
- - task:
156
- type: STS
157
- dataset:
158
- type: mteb/biosses-sts
159
- name: MTEB BIOSSES
160
- config: default
161
- split: test
162
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
163
- metrics:
164
- - type: cos_sim_pearson
165
- value: 89.15068664186332
166
- - type: cos_sim_spearman
167
- value: 86.4013663041054
168
- - type: euclidean_pearson
169
- value: 87.36391302921588
170
- - type: euclidean_spearman
171
- value: 86.4013663041054
172
- - type: manhattan_pearson
173
- value: 87.46116676558589
174
- - type: manhattan_spearman
175
- value: 86.78149544753352
176
- - task:
177
- type: Classification
178
- dataset:
179
- type: mteb/banking77
180
- name: MTEB Banking77Classification
181
- config: default
182
- split: test
183
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
184
- metrics:
185
- - type: accuracy
186
- value: 87.88311688311688
187
- - type: f1
188
- value: 87.82368154811464
189
- - task:
190
- type: Clustering
191
- dataset:
192
- type: mteb/biorxiv-clustering-p2p
193
- name: MTEB BiorxivClusteringP2P
194
- config: default
195
- split: test
196
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
197
- metrics:
198
- - type: v_measure
199
- value: 42.72860396750569
200
- - task:
201
- type: Clustering
202
- dataset:
203
- type: mteb/biorxiv-clustering-s2s
204
- name: MTEB BiorxivClusteringS2S
205
- config: default
206
- split: test
207
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
208
- metrics:
209
- - type: v_measure
210
- value: 39.58412067938718
211
- - task:
212
- type: Retrieval
213
- dataset:
214
- type: mteb/cqadupstack-android
215
- name: MTEB CQADupstackAndroidRetrieval
216
- config: default
217
- split: test
218
- revision: f46a197baaae43b4f621051089b82a364682dfeb
219
- metrics:
220
- - type: map_at_1
221
- value: 34.475
222
- - type: map_at_10
223
- value: 47.221000000000004
224
- - type: map_at_100
225
- value: 48.879
226
- - type: map_at_1000
227
- value: 48.986000000000004
228
- - type: map_at_3
229
- value: 43.326
230
- - type: map_at_5
231
- value: 45.461
232
- - type: mrr_at_1
233
- value: 42.346000000000004
234
- - type: mrr_at_10
235
- value: 53.056000000000004
236
- - type: mrr_at_100
237
- value: 53.833
238
- - type: mrr_at_1000
239
- value: 53.86
240
- - type: mrr_at_3
241
- value: 50.381
242
- - type: mrr_at_5
243
- value: 51.961999999999996
244
- - type: ndcg_at_1
245
- value: 42.346000000000004
246
- - type: ndcg_at_10
247
- value: 54.027
248
- - type: ndcg_at_100
249
- value: 59.596000000000004
250
- - type: ndcg_at_1000
251
- value: 60.931000000000004
252
- - type: ndcg_at_3
253
- value: 48.649
254
- - type: ndcg_at_5
255
- value: 51.092999999999996
256
- - type: precision_at_1
257
- value: 42.346000000000004
258
- - type: precision_at_10
259
- value: 10.358
260
- - type: precision_at_100
261
- value: 1.629
262
- - type: precision_at_1000
263
- value: 0.20400000000000001
264
- - type: precision_at_3
265
- value: 23.319000000000003
266
- - type: precision_at_5
267
- value: 16.767000000000003
268
- - type: recall_at_1
269
- value: 34.475
270
- - type: recall_at_10
271
- value: 67.10300000000001
272
- - type: recall_at_100
273
- value: 89.899
274
- - type: recall_at_1000
275
- value: 97.63300000000001
276
- - type: recall_at_3
277
- value: 51.534
278
- - type: recall_at_5
279
- value: 58.422
280
- - task:
281
- type: Retrieval
282
- dataset:
283
- type: mteb/cqadupstack-english
284
- name: MTEB CQADupstackEnglishRetrieval
285
- config: default
286
- split: test
287
- revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
288
- metrics:
289
- - type: map_at_1
290
- value: 37.019999999999996
291
- - type: map_at_10
292
- value: 48.957
293
- - type: map_at_100
294
- value: 50.312
295
- - type: map_at_1000
296
- value: 50.438
297
- - type: map_at_3
298
- value: 45.544000000000004
299
- - type: map_at_5
300
- value: 47.477999999999994
301
- - type: mrr_at_1
302
- value: 45.924
303
- - type: mrr_at_10
304
- value: 54.994
305
- - type: mrr_at_100
306
- value: 55.592
307
- - type: mrr_at_1000
308
- value: 55.625
309
- - type: mrr_at_3
310
- value: 52.771
311
- - type: mrr_at_5
312
- value: 54.099
313
- - type: ndcg_at_1
314
- value: 45.924
315
- - type: ndcg_at_10
316
- value: 55.031
317
- - type: ndcg_at_100
318
- value: 59.339
319
- - type: ndcg_at_1000
320
- value: 61.063
321
- - type: ndcg_at_3
322
- value: 50.507999999999996
323
- - type: ndcg_at_5
324
- value: 52.613
325
- - type: precision_at_1
326
- value: 45.924
327
- - type: precision_at_10
328
- value: 10.338
329
- - type: precision_at_100
330
- value: 1.6070000000000002
331
- - type: precision_at_1000
332
- value: 0.207
333
- - type: precision_at_3
334
- value: 24.352
335
- - type: precision_at_5
336
- value: 17.185
337
- - type: recall_at_1
338
- value: 37.019999999999996
339
- - type: recall_at_10
340
- value: 65.59700000000001
341
- - type: recall_at_100
342
- value: 83.465
343
- - type: recall_at_1000
344
- value: 93.856
345
- - type: recall_at_3
346
- value: 52.187
347
- - type: recall_at_5
348
- value: 58.153999999999996
349
- - task:
350
- type: Retrieval
351
- dataset:
352
- type: mteb/cqadupstack-gaming
353
- name: MTEB CQADupstackGamingRetrieval
354
- config: default
355
- split: test
356
- revision: 4885aa143210c98657558c04aaf3dc47cfb54340
357
- metrics:
358
- - type: map_at_1
359
- value: 45.145
360
- - type: map_at_10
361
- value: 58.628
362
- - type: map_at_100
363
- value: 59.702999999999996
364
- - type: map_at_1000
365
- value: 59.74
366
- - type: map_at_3
367
- value: 55.13
368
- - type: map_at_5
369
- value: 57.142
370
- - type: mrr_at_1
371
- value: 51.473
372
- - type: mrr_at_10
373
- value: 62.117999999999995
374
- - type: mrr_at_100
375
- value: 62.694
376
- - type: mrr_at_1000
377
- value: 62.709
378
- - type: mrr_at_3
379
- value: 59.707
380
- - type: mrr_at_5
381
- value: 61.099000000000004
382
- - type: ndcg_at_1
383
- value: 51.473
384
- - type: ndcg_at_10
385
- value: 64.741
386
- - type: ndcg_at_100
387
- value: 68.47800000000001
388
- - type: ndcg_at_1000
389
- value: 69.08
390
- - type: ndcg_at_3
391
- value: 59.069
392
- - type: ndcg_at_5
393
- value: 61.868
394
- - type: precision_at_1
395
- value: 51.473
396
- - type: precision_at_10
397
- value: 10.376000000000001
398
- - type: precision_at_100
399
- value: 1.307
400
- - type: precision_at_1000
401
- value: 0.13899999999999998
402
- - type: precision_at_3
403
- value: 26.165
404
- - type: precision_at_5
405
- value: 17.855999999999998
406
- - type: recall_at_1
407
- value: 45.145
408
- - type: recall_at_10
409
- value: 79.07
410
- - type: recall_at_100
411
- value: 94.806
412
- - type: recall_at_1000
413
- value: 98.799
414
- - type: recall_at_3
415
- value: 64.14999999999999
416
- - type: recall_at_5
417
- value: 70.989
418
- - task:
419
- type: Retrieval
420
- dataset:
421
- type: mteb/cqadupstack-gis
422
- name: MTEB CQADupstackGisRetrieval
423
- config: default
424
- split: test
425
- revision: 5003b3064772da1887988e05400cf3806fe491f2
426
- metrics:
427
- - type: map_at_1
428
- value: 29.144
429
- - type: map_at_10
430
- value: 38.742
431
- - type: map_at_100
432
- value: 39.858
433
- - type: map_at_1000
434
- value: 39.921
435
- - type: map_at_3
436
- value: 35.79
437
- - type: map_at_5
438
- value: 37.269000000000005
439
- - type: mrr_at_1
440
- value: 31.525
441
- - type: mrr_at_10
442
- value: 40.925
443
- - type: mrr_at_100
444
- value: 41.931000000000004
445
- - type: mrr_at_1000
446
- value: 41.972
447
- - type: mrr_at_3
448
- value: 38.324000000000005
449
- - type: mrr_at_5
450
- value: 39.573
451
- - type: ndcg_at_1
452
- value: 31.525
453
- - type: ndcg_at_10
454
- value: 44.292
455
- - type: ndcg_at_100
456
- value: 49.704
457
- - type: ndcg_at_1000
458
- value: 51.163000000000004
459
- - type: ndcg_at_3
460
- value: 38.529
461
- - type: ndcg_at_5
462
- value: 40.904
463
- - type: precision_at_1
464
- value: 31.525
465
- - type: precision_at_10
466
- value: 6.825
467
- - type: precision_at_100
468
- value: 1.005
469
- - type: precision_at_1000
470
- value: 0.116
471
- - type: precision_at_3
472
- value: 16.158
473
- - type: precision_at_5
474
- value: 11.096
475
- - type: recall_at_1
476
- value: 29.144
477
- - type: recall_at_10
478
- value: 59.379000000000005
479
- - type: recall_at_100
480
- value: 83.906
481
- - type: recall_at_1000
482
- value: 94.649
483
- - type: recall_at_3
484
- value: 43.602000000000004
485
- - type: recall_at_5
486
- value: 49.305
487
- - task:
488
- type: Retrieval
489
- dataset:
490
- type: mteb/cqadupstack-mathematica
491
- name: MTEB CQADupstackMathematicaRetrieval
492
- config: default
493
- split: test
494
- revision: 90fceea13679c63fe563ded68f3b6f06e50061de
495
- metrics:
496
- - type: map_at_1
497
- value: 21.435000000000002
498
- - type: map_at_10
499
- value: 31.441000000000003
500
- - type: map_at_100
501
- value: 32.805
502
- - type: map_at_1000
503
- value: 32.918
504
- - type: map_at_3
505
- value: 28.164
506
- - type: map_at_5
507
- value: 29.809
508
- - type: mrr_at_1
509
- value: 26.99
510
- - type: mrr_at_10
511
- value: 36.882
512
- - type: mrr_at_100
513
- value: 37.835
514
- - type: mrr_at_1000
515
- value: 37.889
516
- - type: mrr_at_3
517
- value: 34.1
518
- - type: mrr_at_5
519
- value: 35.587
520
- - type: ndcg_at_1
521
- value: 26.99
522
- - type: ndcg_at_10
523
- value: 37.763000000000005
524
- - type: ndcg_at_100
525
- value: 43.636
526
- - type: ndcg_at_1000
527
- value: 45.96
528
- - type: ndcg_at_3
529
- value: 32.04
530
- - type: ndcg_at_5
531
- value: 34.439
532
- - type: precision_at_1
533
- value: 26.99
534
- - type: precision_at_10
535
- value: 7.127
536
- - type: precision_at_100
537
- value: 1.15
538
- - type: precision_at_1000
539
- value: 0.147
540
- - type: precision_at_3
541
- value: 15.629999999999999
542
- - type: precision_at_5
543
- value: 11.269
544
- - type: recall_at_1
545
- value: 21.435000000000002
546
- - type: recall_at_10
547
- value: 51.717999999999996
548
- - type: recall_at_100
549
- value: 76.51599999999999
550
- - type: recall_at_1000
551
- value: 92.632
552
- - type: recall_at_3
553
- value: 35.684
554
- - type: recall_at_5
555
- value: 41.959
556
- - task:
557
- type: Retrieval
558
- dataset:
559
- type: mteb/cqadupstack-physics
560
- name: MTEB CQADupstackPhysicsRetrieval
561
- config: default
562
- split: test
563
- revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
564
- metrics:
565
- - type: map_at_1
566
- value: 33.129999999999995
567
- - type: map_at_10
568
- value: 46.006
569
- - type: map_at_100
570
- value: 47.339999999999996
571
- - type: map_at_1000
572
- value: 47.435
573
- - type: map_at_3
574
- value: 42.349
575
- - type: map_at_5
576
- value: 44.349
577
- - type: mrr_at_1
578
- value: 40.422999999999995
579
- - type: mrr_at_10
580
- value: 51.5
581
- - type: mrr_at_100
582
- value: 52.217999999999996
583
- - type: mrr_at_1000
584
- value: 52.246
585
- - type: mrr_at_3
586
- value: 48.973
587
- - type: mrr_at_5
588
- value: 50.407000000000004
589
- - type: ndcg_at_1
590
- value: 40.422999999999995
591
- - type: ndcg_at_10
592
- value: 52.71900000000001
593
- - type: ndcg_at_100
594
- value: 57.824
595
- - type: ndcg_at_1000
596
- value: 59.321999999999996
597
- - type: ndcg_at_3
598
- value: 47.169
599
- - type: ndcg_at_5
600
- value: 49.774
601
- - type: precision_at_1
602
- value: 40.422999999999995
603
- - type: precision_at_10
604
- value: 9.74
605
- - type: precision_at_100
606
- value: 1.4409999999999998
607
- - type: precision_at_1000
608
- value: 0.172
609
- - type: precision_at_3
610
- value: 22.778000000000002
611
- - type: precision_at_5
612
- value: 16.131
613
- - type: recall_at_1
614
- value: 33.129999999999995
615
- - type: recall_at_10
616
- value: 66.864
617
- - type: recall_at_100
618
- value: 87.812
619
- - type: recall_at_1000
620
- value: 97.214
621
- - type: recall_at_3
622
- value: 51.305
623
- - type: recall_at_5
624
- value: 58.046
625
- - task:
626
- type: Retrieval
627
- dataset:
628
- type: mteb/cqadupstack-programmers
629
- name: MTEB CQADupstackProgrammersRetrieval
630
- config: default
631
- split: test
632
- revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
633
- metrics:
634
- - type: map_at_1
635
- value: 30.062
636
- - type: map_at_10
637
- value: 42.166
638
- - type: map_at_100
639
- value: 43.673
640
- - type: map_at_1000
641
- value: 43.765
642
- - type: map_at_3
643
- value: 38.035000000000004
644
- - type: map_at_5
645
- value: 40.39
646
- - type: mrr_at_1
647
- value: 36.758
648
- - type: mrr_at_10
649
- value: 47.419
650
- - type: mrr_at_100
651
- value: 48.352000000000004
652
- - type: mrr_at_1000
653
- value: 48.387
654
- - type: mrr_at_3
655
- value: 44.330000000000005
656
- - type: mrr_at_5
657
- value: 46.197
658
- - type: ndcg_at_1
659
- value: 36.758
660
- - type: ndcg_at_10
661
- value: 48.923
662
- - type: ndcg_at_100
663
- value: 54.58
664
- - type: ndcg_at_1000
665
- value: 56.208000000000006
666
- - type: ndcg_at_3
667
- value: 42.437999999999995
668
- - type: ndcg_at_5
669
- value: 45.539
670
- - type: precision_at_1
671
- value: 36.758
672
- - type: precision_at_10
673
- value: 9.247
674
- - type: precision_at_100
675
- value: 1.396
676
- - type: precision_at_1000
677
- value: 0.17099999999999999
678
- - type: precision_at_3
679
- value: 20.548
680
- - type: precision_at_5
681
- value: 15.046000000000001
682
- - type: recall_at_1
683
- value: 30.062
684
- - type: recall_at_10
685
- value: 63.54
686
- - type: recall_at_100
687
- value: 86.54899999999999
688
- - type: recall_at_1000
689
- value: 97.14699999999999
690
- - type: recall_at_3
691
- value: 45.62
692
- - type: recall_at_5
693
- value: 53.687
694
- - task:
695
- type: Retrieval
696
- dataset:
697
- type: mteb/cqadupstack
698
- name: MTEB CQADupstackRetrieval
699
- config: default
700
- split: test
701
- revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
702
- metrics:
703
- - type: map_at_1
704
- value: 30.082666666666665
705
- - type: map_at_10
706
- value: 41.13875
707
- - type: map_at_100
708
- value: 42.45525
709
- - type: map_at_1000
710
- value: 42.561249999999994
711
- - type: map_at_3
712
- value: 37.822750000000006
713
- - type: map_at_5
714
- value: 39.62658333333333
715
- - type: mrr_at_1
716
- value: 35.584
717
- - type: mrr_at_10
718
- value: 45.4675
719
- - type: mrr_at_100
720
- value: 46.31016666666667
721
- - type: mrr_at_1000
722
- value: 46.35191666666666
723
- - type: mrr_at_3
724
- value: 42.86674999999999
725
- - type: mrr_at_5
726
- value: 44.31341666666666
727
- - type: ndcg_at_1
728
- value: 35.584
729
- - type: ndcg_at_10
730
- value: 47.26516666666667
731
- - type: ndcg_at_100
732
- value: 52.49108333333332
733
- - type: ndcg_at_1000
734
- value: 54.24575
735
- - type: ndcg_at_3
736
- value: 41.83433333333334
737
- - type: ndcg_at_5
738
- value: 44.29899999999999
739
- - type: precision_at_1
740
- value: 35.584
741
- - type: precision_at_10
742
- value: 8.390333333333334
743
- - type: precision_at_100
744
- value: 1.2941666666666667
745
- - type: precision_at_1000
746
- value: 0.16308333333333336
747
- - type: precision_at_3
748
- value: 19.414583333333333
749
- - type: precision_at_5
750
- value: 13.751
751
- - type: recall_at_1
752
- value: 30.082666666666665
753
- - type: recall_at_10
754
- value: 60.88875
755
- - type: recall_at_100
756
- value: 83.35141666666667
757
- - type: recall_at_1000
758
- value: 95.0805
759
- - type: recall_at_3
760
- value: 45.683749999999996
761
- - type: recall_at_5
762
- value: 52.08208333333333
763
- - task:
764
- type: Retrieval
765
- dataset:
766
- type: mteb/cqadupstack-stats
767
- name: MTEB CQADupstackStatsRetrieval
768
- config: default
769
- split: test
770
- revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
771
- metrics:
772
- - type: map_at_1
773
- value: 26.33
774
- - type: map_at_10
775
- value: 35.762
776
- - type: map_at_100
777
- value: 36.873
778
- - type: map_at_1000
779
- value: 36.961
780
- - type: map_at_3
781
- value: 33.097
782
- - type: map_at_5
783
- value: 34.526
784
- - type: mrr_at_1
785
- value: 29.755
786
- - type: mrr_at_10
787
- value: 38.699
788
- - type: mrr_at_100
789
- value: 39.556000000000004
790
- - type: mrr_at_1000
791
- value: 39.611000000000004
792
- - type: mrr_at_3
793
- value: 36.120000000000005
794
- - type: mrr_at_5
795
- value: 37.523
796
- - type: ndcg_at_1
797
- value: 29.755
798
- - type: ndcg_at_10
799
- value: 41.193999999999996
800
- - type: ndcg_at_100
801
- value: 46.26
802
- - type: ndcg_at_1000
803
- value: 48.321
804
- - type: ndcg_at_3
805
- value: 36.152
806
- - type: ndcg_at_5
807
- value: 38.478
808
- - type: precision_at_1
809
- value: 29.755
810
- - type: precision_at_10
811
- value: 6.7330000000000005
812
- - type: precision_at_100
813
- value: 1.012
814
- - type: precision_at_1000
815
- value: 0.126
816
- - type: precision_at_3
817
- value: 15.951
818
- - type: precision_at_5
819
- value: 11.258
820
- - type: recall_at_1
821
- value: 26.33
822
- - type: recall_at_10
823
- value: 54.856
824
- - type: recall_at_100
825
- value: 77.45100000000001
826
- - type: recall_at_1000
827
- value: 92.483
828
- - type: recall_at_3
829
- value: 40.924
830
- - type: recall_at_5
831
- value: 46.581
832
- - task:
833
- type: Retrieval
834
- dataset:
835
- type: mteb/cqadupstack-tex
836
- name: MTEB CQADupstackTexRetrieval
837
- config: default
838
- split: test
839
- revision: 46989137a86843e03a6195de44b09deda022eec7
840
- metrics:
841
- - type: map_at_1
842
- value: 20.4
843
- - type: map_at_10
844
- value: 29.483999999999998
845
- - type: map_at_100
846
- value: 30.75
847
- - type: map_at_1000
848
- value: 30.869000000000003
849
- - type: map_at_3
850
- value: 26.533
851
- - type: map_at_5
852
- value: 28.192
853
- - type: mrr_at_1
854
- value: 24.914
855
- - type: mrr_at_10
856
- value: 33.844
857
- - type: mrr_at_100
858
- value: 34.787
859
- - type: mrr_at_1000
860
- value: 34.853
861
- - type: mrr_at_3
862
- value: 31.223
863
- - type: mrr_at_5
864
- value: 32.718
865
- - type: ndcg_at_1
866
- value: 24.914
867
- - type: ndcg_at_10
868
- value: 35.118
869
- - type: ndcg_at_100
870
- value: 40.729
871
- - type: ndcg_at_1000
872
- value: 43.25
873
- - type: ndcg_at_3
874
- value: 30.011
875
- - type: ndcg_at_5
876
- value: 32.416
877
- - type: precision_at_1
878
- value: 24.914
879
- - type: precision_at_10
880
- value: 6.483
881
- - type: precision_at_100
882
- value: 1.082
883
- - type: precision_at_1000
884
- value: 0.148
885
- - type: precision_at_3
886
- value: 14.280999999999999
887
- - type: precision_at_5
888
- value: 10.440000000000001
889
- - type: recall_at_1
890
- value: 20.4
891
- - type: recall_at_10
892
- value: 47.717
893
- - type: recall_at_100
894
- value: 72.444
895
- - type: recall_at_1000
896
- value: 89.97800000000001
897
- - type: recall_at_3
898
- value: 33.428999999999995
899
- - type: recall_at_5
900
- value: 39.662
901
- - task:
902
- type: Retrieval
903
- dataset:
904
- type: mteb/cqadupstack-unix
905
- name: MTEB CQADupstackUnixRetrieval
906
- config: default
907
- split: test
908
- revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
909
- metrics:
910
- - type: map_at_1
911
- value: 30.896
912
- - type: map_at_10
913
- value: 41.981
914
- - type: map_at_100
915
- value: 43.238
916
- - type: map_at_1000
917
- value: 43.325
918
- - type: map_at_3
919
- value: 38.66
920
- - type: map_at_5
921
- value: 40.502
922
- - type: mrr_at_1
923
- value: 36.66
924
- - type: mrr_at_10
925
- value: 46.544999999999995
926
- - type: mrr_at_100
927
- value: 47.412
928
- - type: mrr_at_1000
929
- value: 47.46
930
- - type: mrr_at_3
931
- value: 43.812
932
- - type: mrr_at_5
933
- value: 45.403
934
- - type: ndcg_at_1
935
- value: 36.66
936
- - type: ndcg_at_10
937
- value: 48.113
938
- - type: ndcg_at_100
939
- value: 53.476
940
- - type: ndcg_at_1000
941
- value: 55.206999999999994
942
- - type: ndcg_at_3
943
- value: 42.522
944
- - type: ndcg_at_5
945
- value: 45.132
946
- - type: precision_at_1
947
- value: 36.66
948
- - type: precision_at_10
949
- value: 8.274
950
- - type: precision_at_100
951
- value: 1.2229999999999999
952
- - type: precision_at_1000
953
- value: 0.147
954
- - type: precision_at_3
955
- value: 19.527
956
- - type: precision_at_5
957
- value: 13.750000000000002
958
- - type: recall_at_1
959
- value: 30.896
960
- - type: recall_at_10
961
- value: 62.150000000000006
962
- - type: recall_at_100
963
- value: 84.921
964
- - type: recall_at_1000
965
- value: 96.394
966
- - type: recall_at_3
967
- value: 46.596
968
- - type: recall_at_5
969
- value: 53.410000000000004
970
- - task:
971
- type: Retrieval
972
- dataset:
973
- type: mteb/cqadupstack-webmasters
974
- name: MTEB CQADupstackWebmastersRetrieval
975
- config: default
976
- split: test
977
- revision: 160c094312a0e1facb97e55eeddb698c0abe3571
978
- metrics:
979
- - type: map_at_1
980
- value: 28.965000000000003
981
- - type: map_at_10
982
- value: 39.394
983
- - type: map_at_100
984
- value: 41.077999999999996
985
- - type: map_at_1000
986
- value: 41.332
987
- - type: map_at_3
988
- value: 35.876999999999995
989
- - type: map_at_5
990
- value: 37.649
991
- - type: mrr_at_1
992
- value: 33.992
993
- - type: mrr_at_10
994
- value: 43.462
995
- - type: mrr_at_100
996
- value: 44.388
997
- - type: mrr_at_1000
998
- value: 44.433
999
- - type: mrr_at_3
1000
- value: 40.711000000000006
1001
- - type: mrr_at_5
1002
- value: 41.996
1003
- - type: ndcg_at_1
1004
- value: 33.992
1005
- - type: ndcg_at_10
1006
- value: 45.997
1007
- - type: ndcg_at_100
1008
- value: 51.681
1009
- - type: ndcg_at_1000
1010
- value: 53.825
1011
- - type: ndcg_at_3
1012
- value: 40.481
1013
- - type: ndcg_at_5
1014
- value: 42.611
1015
- - type: precision_at_1
1016
- value: 33.992
1017
- - type: precision_at_10
1018
- value: 8.972
1019
- - type: precision_at_100
1020
- value: 1.717
1021
- - type: precision_at_1000
1022
- value: 0.255
1023
- - type: precision_at_3
1024
- value: 19.17
1025
- - type: precision_at_5
1026
- value: 13.715
1027
- - type: recall_at_1
1028
- value: 28.965000000000003
1029
- - type: recall_at_10
1030
- value: 59.179
1031
- - type: recall_at_100
1032
- value: 84.493
1033
- - type: recall_at_1000
1034
- value: 97.36399999999999
1035
- - type: recall_at_3
1036
- value: 42.897
1037
- - type: recall_at_5
1038
- value: 48.957
1039
- - task:
1040
- type: Retrieval
1041
- dataset:
1042
- type: mteb/cqadupstack-wordpress
1043
- name: MTEB CQADupstackWordpressRetrieval
1044
- config: default
1045
- split: test
1046
- revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1047
- metrics:
1048
- - type: map_at_1
1049
- value: 23.990000000000002
1050
- - type: map_at_10
1051
- value: 33.883
1052
- - type: map_at_100
1053
- value: 34.954
1054
- - type: map_at_1000
1055
- value: 35.045
1056
- - type: map_at_3
1057
- value: 31.368000000000002
1058
- - type: map_at_5
1059
- value: 32.751999999999995
1060
- - type: mrr_at_1
1061
- value: 26.247999999999998
1062
- - type: mrr_at_10
1063
- value: 36.166
1064
- - type: mrr_at_100
1065
- value: 37.124
1066
- - type: mrr_at_1000
1067
- value: 37.178
1068
- - type: mrr_at_3
1069
- value: 33.949
1070
- - type: mrr_at_5
1071
- value: 35.197
1072
- - type: ndcg_at_1
1073
- value: 26.247999999999998
1074
- - type: ndcg_at_10
1075
- value: 39.263999999999996
1076
- - type: ndcg_at_100
1077
- value: 44.59
1078
- - type: ndcg_at_1000
1079
- value: 46.619
1080
- - type: ndcg_at_3
1081
- value: 34.444
1082
- - type: ndcg_at_5
1083
- value: 36.721
1084
- - type: precision_at_1
1085
- value: 26.247999999999998
1086
- - type: precision_at_10
1087
- value: 6.211
1088
- - type: precision_at_100
1089
- value: 0.9610000000000001
1090
- - type: precision_at_1000
1091
- value: 0.125
1092
- - type: precision_at_3
1093
- value: 15.096000000000002
1094
- - type: precision_at_5
1095
- value: 10.499
1096
- - type: recall_at_1
1097
- value: 23.990000000000002
1098
- - type: recall_at_10
1099
- value: 53.492
1100
- - type: recall_at_100
1101
- value: 77.955
1102
- - type: recall_at_1000
1103
- value: 92.81700000000001
1104
- - type: recall_at_3
1105
- value: 40.277
1106
- - type: recall_at_5
1107
- value: 45.812999999999995
1108
- - task:
1109
- type: Retrieval
1110
- dataset:
1111
- type: mteb/climate-fever
1112
- name: MTEB ClimateFEVER
1113
- config: default
1114
- split: test
1115
- revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1116
- metrics:
1117
- - type: map_at_1
1118
- value: 16.747
1119
- - type: map_at_10
1120
- value: 29.168
1121
- - type: map_at_100
1122
- value: 31.304
1123
- - type: map_at_1000
1124
- value: 31.496000000000002
1125
- - type: map_at_3
1126
- value: 24.57
1127
- - type: map_at_5
1128
- value: 26.886
1129
- - type: mrr_at_1
1130
- value: 37.524
1131
- - type: mrr_at_10
1132
- value: 50.588
1133
- - type: mrr_at_100
1134
- value: 51.28
1135
- - type: mrr_at_1000
1136
- value: 51.29899999999999
1137
- - type: mrr_at_3
1138
- value: 47.438
1139
- - type: mrr_at_5
1140
- value: 49.434
1141
- - type: ndcg_at_1
1142
- value: 37.524
1143
- - type: ndcg_at_10
1144
- value: 39.11
1145
- - type: ndcg_at_100
1146
- value: 46.373999999999995
1147
- - type: ndcg_at_1000
1148
- value: 49.370999999999995
1149
- - type: ndcg_at_3
1150
- value: 32.964
1151
- - type: ndcg_at_5
1152
- value: 35.028
1153
- - type: precision_at_1
1154
- value: 37.524
1155
- - type: precision_at_10
1156
- value: 12.137
1157
- - type: precision_at_100
1158
- value: 1.9929999999999999
1159
- - type: precision_at_1000
1160
- value: 0.256
1161
- - type: precision_at_3
1162
- value: 24.886
1163
- - type: precision_at_5
1164
- value: 18.762
1165
- - type: recall_at_1
1166
- value: 16.747
1167
- - type: recall_at_10
1168
- value: 45.486
1169
- - type: recall_at_100
1170
- value: 69.705
1171
- - type: recall_at_1000
1172
- value: 86.119
1173
- - type: recall_at_3
1174
- value: 30.070999999999998
1175
- - type: recall_at_5
1176
- value: 36.565
1177
- - task:
1178
- type: Retrieval
1179
- dataset:
1180
- type: mteb/dbpedia
1181
- name: MTEB DBPedia
1182
- config: default
1183
- split: test
1184
- revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1185
- metrics:
1186
- - type: map_at_1
1187
- value: 10.495000000000001
1188
- - type: map_at_10
1189
- value: 24.005000000000003
1190
- - type: map_at_100
1191
- value: 34.37
1192
- - type: map_at_1000
1193
- value: 36.268
1194
- - type: map_at_3
1195
- value: 16.694
1196
- - type: map_at_5
1197
- value: 19.845
1198
- - type: mrr_at_1
1199
- value: 75.5
1200
- - type: mrr_at_10
1201
- value: 82.458
1202
- - type: mrr_at_100
1203
- value: 82.638
1204
- - type: mrr_at_1000
1205
- value: 82.64
1206
- - type: mrr_at_3
1207
- value: 81.25
1208
- - type: mrr_at_5
1209
- value: 82.125
1210
- - type: ndcg_at_1
1211
- value: 64.625
1212
- - type: ndcg_at_10
1213
- value: 51.322
1214
- - type: ndcg_at_100
1215
- value: 55.413999999999994
1216
- - type: ndcg_at_1000
1217
- value: 62.169
1218
- - type: ndcg_at_3
1219
- value: 56.818999999999996
1220
- - type: ndcg_at_5
1221
- value: 54.32900000000001
1222
- - type: precision_at_1
1223
- value: 75.5
1224
- - type: precision_at_10
1225
- value: 40.849999999999994
1226
- - type: precision_at_100
1227
- value: 12.882
1228
- - type: precision_at_1000
1229
- value: 2.394
1230
- - type: precision_at_3
1231
- value: 59.667
1232
- - type: precision_at_5
1233
- value: 52.2
1234
- - type: recall_at_1
1235
- value: 10.495000000000001
1236
- - type: recall_at_10
1237
- value: 29.226000000000003
1238
- - type: recall_at_100
1239
- value: 59.614
1240
- - type: recall_at_1000
1241
- value: 81.862
1242
- - type: recall_at_3
1243
- value: 17.97
1244
- - type: recall_at_5
1245
- value: 22.438
1246
- - task:
1247
- type: Classification
1248
- dataset:
1249
- type: mteb/emotion
1250
- name: MTEB EmotionClassification
1251
- config: default
1252
- split: test
1253
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1254
- metrics:
1255
- - type: accuracy
1256
- value: 51.82
1257
- - type: f1
1258
- value: 47.794956731921054
1259
- - task:
1260
- type: Retrieval
1261
- dataset:
1262
- type: mteb/fever
1263
- name: MTEB FEVER
1264
- config: default
1265
- split: test
1266
- revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1267
- metrics:
1268
- - type: map_at_1
1269
- value: 82.52199999999999
1270
- - type: map_at_10
1271
- value: 89.794
1272
- - type: map_at_100
1273
- value: 89.962
1274
- - type: map_at_1000
1275
- value: 89.972
1276
- - type: map_at_3
1277
- value: 88.95100000000001
1278
- - type: map_at_5
1279
- value: 89.524
1280
- - type: mrr_at_1
1281
- value: 88.809
1282
- - type: mrr_at_10
1283
- value: 93.554
1284
- - type: mrr_at_100
1285
- value: 93.577
1286
- - type: mrr_at_1000
1287
- value: 93.577
1288
- - type: mrr_at_3
1289
- value: 93.324
1290
- - type: mrr_at_5
1291
- value: 93.516
1292
- - type: ndcg_at_1
1293
- value: 88.809
1294
- - type: ndcg_at_10
1295
- value: 92.419
1296
- - type: ndcg_at_100
1297
- value: 92.95
1298
- - type: ndcg_at_1000
1299
- value: 93.10000000000001
1300
- - type: ndcg_at_3
1301
- value: 91.45299999999999
1302
- - type: ndcg_at_5
1303
- value: 92.05
1304
- - type: precision_at_1
1305
- value: 88.809
1306
- - type: precision_at_10
1307
- value: 10.911999999999999
1308
- - type: precision_at_100
1309
- value: 1.143
1310
- - type: precision_at_1000
1311
- value: 0.117
1312
- - type: precision_at_3
1313
- value: 34.623
1314
- - type: precision_at_5
1315
- value: 21.343999999999998
1316
- - type: recall_at_1
1317
- value: 82.52199999999999
1318
- - type: recall_at_10
1319
- value: 96.59400000000001
1320
- - type: recall_at_100
1321
- value: 98.55699999999999
1322
- - type: recall_at_1000
1323
- value: 99.413
1324
- - type: recall_at_3
1325
- value: 94.02199999999999
1326
- - type: recall_at_5
1327
- value: 95.582
1328
- - task:
1329
- type: Retrieval
1330
- dataset:
1331
- type: mteb/fiqa
1332
- name: MTEB FiQA2018
1333
- config: default
1334
- split: test
1335
- revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1336
- metrics:
1337
- - type: map_at_1
1338
- value: 32.842
1339
- - type: map_at_10
1340
- value: 53.147
1341
- - type: map_at_100
1342
- value: 55.265
1343
- - type: map_at_1000
1344
- value: 55.37
1345
- - type: map_at_3
1346
- value: 46.495
1347
- - type: map_at_5
1348
- value: 50.214999999999996
1349
- - type: mrr_at_1
1350
- value: 61.574
1351
- - type: mrr_at_10
1352
- value: 68.426
1353
- - type: mrr_at_100
1354
- value: 68.935
1355
- - type: mrr_at_1000
1356
- value: 68.95400000000001
1357
- - type: mrr_at_3
1358
- value: 66.307
1359
- - type: mrr_at_5
1360
- value: 67.611
1361
- - type: ndcg_at_1
1362
- value: 61.574
1363
- - type: ndcg_at_10
1364
- value: 61.205
1365
- - type: ndcg_at_100
1366
- value: 67.25999999999999
1367
- - type: ndcg_at_1000
1368
- value: 68.657
1369
- - type: ndcg_at_3
1370
- value: 56.717
1371
- - type: ndcg_at_5
1372
- value: 58.196999999999996
1373
- - type: precision_at_1
1374
- value: 61.574
1375
- - type: precision_at_10
1376
- value: 16.852
1377
- - type: precision_at_100
1378
- value: 2.33
1379
- - type: precision_at_1000
1380
- value: 0.256
1381
- - type: precision_at_3
1382
- value: 37.5
1383
- - type: precision_at_5
1384
- value: 27.468999999999998
1385
- - type: recall_at_1
1386
- value: 32.842
1387
- - type: recall_at_10
1388
- value: 68.157
1389
- - type: recall_at_100
1390
- value: 89.5
1391
- - type: recall_at_1000
1392
- value: 97.68599999999999
1393
- - type: recall_at_3
1394
- value: 50.783
1395
- - type: recall_at_5
1396
- value: 58.672000000000004
1397
- - task:
1398
- type: Retrieval
1399
- dataset:
1400
- type: mteb/hotpotqa
1401
- name: MTEB HotpotQA
1402
- config: default
1403
- split: test
1404
- revision: ab518f4d6fcca38d87c25209f94beba119d02014
1405
- metrics:
1406
- - type: map_at_1
1407
- value: 39.068000000000005
1408
- - type: map_at_10
1409
- value: 69.253
1410
- - type: map_at_100
1411
- value: 70.036
1412
- - type: map_at_1000
1413
- value: 70.081
1414
- - type: map_at_3
1415
- value: 65.621
1416
- - type: map_at_5
1417
- value: 67.976
1418
- - type: mrr_at_1
1419
- value: 78.13600000000001
1420
- - type: mrr_at_10
1421
- value: 84.328
1422
- - type: mrr_at_100
1423
- value: 84.515
1424
- - type: mrr_at_1000
1425
- value: 84.52300000000001
1426
- - type: mrr_at_3
1427
- value: 83.52199999999999
1428
- - type: mrr_at_5
1429
- value: 84.019
1430
- - type: ndcg_at_1
1431
- value: 78.13600000000001
1432
- - type: ndcg_at_10
1433
- value: 76.236
1434
- - type: ndcg_at_100
1435
- value: 78.891
1436
- - type: ndcg_at_1000
1437
- value: 79.73400000000001
1438
- - type: ndcg_at_3
1439
- value: 71.258
1440
- - type: ndcg_at_5
1441
- value: 74.129
1442
- - type: precision_at_1
1443
- value: 78.13600000000001
1444
- - type: precision_at_10
1445
- value: 16.347
1446
- - type: precision_at_100
1447
- value: 1.839
1448
- - type: precision_at_1000
1449
- value: 0.19499999999999998
1450
- - type: precision_at_3
1451
- value: 47.189
1452
- - type: precision_at_5
1453
- value: 30.581999999999997
1454
- - type: recall_at_1
1455
- value: 39.068000000000005
1456
- - type: recall_at_10
1457
- value: 81.735
1458
- - type: recall_at_100
1459
- value: 91.945
1460
- - type: recall_at_1000
1461
- value: 97.44800000000001
1462
- - type: recall_at_3
1463
- value: 70.783
1464
- - type: recall_at_5
1465
- value: 76.455
1466
- - task:
1467
- type: Classification
1468
- dataset:
1469
- type: mteb/imdb
1470
- name: MTEB ImdbClassification
1471
- config: default
1472
- split: test
1473
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1474
- metrics:
1475
- - type: accuracy
1476
- value: 94.7764
1477
- - type: ap
1478
- value: 92.67841294818406
1479
- - type: f1
1480
- value: 94.77375157383646
1481
- - task:
1482
- type: Retrieval
1483
- dataset:
1484
- type: mteb/msmarco
1485
- name: MTEB MSMARCO
1486
- config: default
1487
- split: dev
1488
- revision: c5a29a104738b98a9e76336939199e264163d4a0
1489
- metrics:
1490
- - type: map_at_1
1491
- value: 24.624
1492
- - type: map_at_10
1493
- value: 37.861
1494
- - type: map_at_100
1495
- value: 39.011
1496
- - type: map_at_1000
1497
- value: 39.052
1498
- - type: map_at_3
1499
- value: 33.76
1500
- - type: map_at_5
1501
- value: 36.153
1502
- - type: mrr_at_1
1503
- value: 25.358000000000004
1504
- - type: mrr_at_10
1505
- value: 38.5
1506
- - type: mrr_at_100
1507
- value: 39.572
1508
- - type: mrr_at_1000
1509
- value: 39.607
1510
- - type: mrr_at_3
1511
- value: 34.491
1512
- - type: mrr_at_5
1513
- value: 36.83
1514
- - type: ndcg_at_1
1515
- value: 25.358000000000004
1516
- - type: ndcg_at_10
1517
- value: 45.214999999999996
1518
- - type: ndcg_at_100
1519
- value: 50.56
1520
- - type: ndcg_at_1000
1521
- value: 51.507999999999996
1522
- - type: ndcg_at_3
1523
- value: 36.925999999999995
1524
- - type: ndcg_at_5
1525
- value: 41.182
1526
- - type: precision_at_1
1527
- value: 25.358000000000004
1528
- - type: precision_at_10
1529
- value: 7.090000000000001
1530
- - type: precision_at_100
1531
- value: 0.9740000000000001
1532
- - type: precision_at_1000
1533
- value: 0.106
1534
- - type: precision_at_3
1535
- value: 15.697
1536
- - type: precision_at_5
1537
- value: 11.599
1538
- - type: recall_at_1
1539
- value: 24.624
1540
- - type: recall_at_10
1541
- value: 67.78699999999999
1542
- - type: recall_at_100
1543
- value: 92.11200000000001
1544
- - type: recall_at_1000
1545
- value: 99.208
1546
- - type: recall_at_3
1547
- value: 45.362
1548
- - type: recall_at_5
1549
- value: 55.58
1550
- - task:
1551
- type: Classification
1552
- dataset:
1553
- type: mteb/mtop_domain
1554
- name: MTEB MTOPDomainClassification (en)
1555
- config: en
1556
- split: test
1557
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1558
- metrics:
1559
- - type: accuracy
1560
- value: 96.83310533515733
1561
- - type: f1
1562
- value: 96.57069781347995
1563
- - task:
1564
- type: Classification
1565
- dataset:
1566
- type: mteb/mtop_intent
1567
- name: MTEB MTOPIntentClassification (en)
1568
- config: en
1569
- split: test
1570
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1571
- metrics:
1572
- - type: accuracy
1573
- value: 89.5690834473324
1574
- - type: f1
1575
- value: 73.7275204564728
1576
- - task:
1577
- type: Classification
1578
- dataset:
1579
- type: mteb/amazon_massive_intent
1580
- name: MTEB MassiveIntentClassification (en)
1581
- config: en
1582
- split: test
1583
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1584
- metrics:
1585
- - type: accuracy
1586
- value: 82.67316745124411
1587
- - type: f1
1588
- value: 79.70626515721662
1589
- - task:
1590
- type: Classification
1591
- dataset:
1592
- type: mteb/amazon_massive_scenario
1593
- name: MTEB MassiveScenarioClassification (en)
1594
- config: en
1595
- split: test
1596
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1597
- metrics:
1598
- - type: accuracy
1599
- value: 85.01344989912575
1600
- - type: f1
1601
- value: 84.45181022816965
1602
- - task:
1603
- type: Clustering
1604
- dataset:
1605
- type: mteb/medrxiv-clustering-p2p
1606
- name: MTEB MedrxivClusteringP2P
1607
- config: default
1608
- split: test
1609
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1610
- metrics:
1611
- - type: v_measure
1612
- value: 37.843426126777295
1613
- - task:
1614
- type: Clustering
1615
- dataset:
1616
- type: mteb/medrxiv-clustering-s2s
1617
- name: MTEB MedrxivClusteringS2S
1618
- config: default
1619
- split: test
1620
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1621
- metrics:
1622
- - type: v_measure
1623
- value: 36.651728547241476
1624
- - task:
1625
- type: Reranking
1626
- dataset:
1627
- type: mteb/mind_small
1628
- name: MTEB MindSmallReranking
1629
- config: default
1630
- split: test
1631
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1632
- metrics:
1633
- - type: map
1634
- value: 32.05750522793288
1635
- - type: mrr
1636
- value: 33.28067556869468
1637
- - task:
1638
- type: Retrieval
1639
- dataset:
1640
- type: mteb/nfcorpus
1641
- name: MTEB NFCorpus
1642
- config: default
1643
- split: test
1644
- revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1645
- metrics:
1646
- - type: map_at_1
1647
- value: 6.744
1648
- - type: map_at_10
1649
- value: 16.235
1650
- - type: map_at_100
1651
- value: 20.767
1652
- - type: map_at_1000
1653
- value: 22.469
1654
- - type: map_at_3
1655
- value: 11.708
1656
- - type: map_at_5
1657
- value: 13.924
1658
- - type: mrr_at_1
1659
- value: 55.728
1660
- - type: mrr_at_10
1661
- value: 63.869
1662
- - type: mrr_at_100
1663
- value: 64.322
1664
- - type: mrr_at_1000
1665
- value: 64.342
1666
- - type: mrr_at_3
1667
- value: 62.022999999999996
1668
- - type: mrr_at_5
1669
- value: 63.105999999999995
1670
- - type: ndcg_at_1
1671
- value: 53.096
1672
- - type: ndcg_at_10
1673
- value: 41.618
1674
- - type: ndcg_at_100
1675
- value: 38.562999999999995
1676
- - type: ndcg_at_1000
1677
- value: 47.006
1678
- - type: ndcg_at_3
1679
- value: 47.657
1680
- - type: ndcg_at_5
1681
- value: 45.562999999999995
1682
- - type: precision_at_1
1683
- value: 55.108000000000004
1684
- - type: precision_at_10
1685
- value: 30.464000000000002
1686
- - type: precision_at_100
1687
- value: 9.737
1688
- - type: precision_at_1000
1689
- value: 2.2720000000000002
1690
- - type: precision_at_3
1691
- value: 44.376
1692
- - type: precision_at_5
1693
- value: 39.505
1694
- - type: recall_at_1
1695
- value: 6.744
1696
- - type: recall_at_10
1697
- value: 21.11
1698
- - type: recall_at_100
1699
- value: 39.69
1700
- - type: recall_at_1000
1701
- value: 70.44
1702
- - type: recall_at_3
1703
- value: 13.120000000000001
1704
- - type: recall_at_5
1705
- value: 16.669
1706
- - task:
1707
- type: Retrieval
1708
- dataset:
1709
- type: mteb/nq
1710
- name: MTEB NQ
1711
- config: default
1712
- split: test
1713
- revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1714
- metrics:
1715
- - type: map_at_1
1716
- value: 46.263
1717
- - type: map_at_10
1718
- value: 63.525
1719
- - type: map_at_100
1720
- value: 64.142
1721
- - type: map_at_1000
1722
- value: 64.14800000000001
1723
- - type: map_at_3
1724
- value: 59.653
1725
- - type: map_at_5
1726
- value: 62.244
1727
- - type: mrr_at_1
1728
- value: 51.796
1729
- - type: mrr_at_10
1730
- value: 65.764
1731
- - type: mrr_at_100
1732
- value: 66.155
1733
- - type: mrr_at_1000
1734
- value: 66.158
1735
- - type: mrr_at_3
1736
- value: 63.05500000000001
1737
- - type: mrr_at_5
1738
- value: 64.924
1739
- - type: ndcg_at_1
1740
- value: 51.766999999999996
1741
- - type: ndcg_at_10
1742
- value: 70.626
1743
- - type: ndcg_at_100
1744
- value: 72.905
1745
- - type: ndcg_at_1000
1746
- value: 73.021
1747
- - type: ndcg_at_3
1748
- value: 63.937999999999995
1749
- - type: ndcg_at_5
1750
- value: 68.00699999999999
1751
- - type: precision_at_1
1752
- value: 51.766999999999996
1753
- - type: precision_at_10
1754
- value: 10.768
1755
- - type: precision_at_100
1756
- value: 1.203
1757
- - type: precision_at_1000
1758
- value: 0.121
1759
- - type: precision_at_3
1760
- value: 28.409000000000002
1761
- - type: precision_at_5
1762
- value: 19.502
1763
- - type: recall_at_1
1764
- value: 46.263
1765
- - type: recall_at_10
1766
- value: 89.554
1767
- - type: recall_at_100
1768
- value: 98.914
1769
- - type: recall_at_1000
1770
- value: 99.754
1771
- - type: recall_at_3
1772
- value: 72.89999999999999
1773
- - type: recall_at_5
1774
- value: 82.1
1775
- - task:
1776
- type: Retrieval
1777
- dataset:
1778
- type: mteb/quora
1779
- name: MTEB QuoraRetrieval
1780
- config: default
1781
- split: test
1782
- revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1783
- metrics:
1784
- - type: map_at_1
1785
- value: 72.748
1786
- - type: map_at_10
1787
- value: 86.87700000000001
1788
- - type: map_at_100
1789
- value: 87.46199999999999
1790
- - type: map_at_1000
1791
- value: 87.47399999999999
1792
- - type: map_at_3
1793
- value: 83.95700000000001
1794
- - type: map_at_5
1795
- value: 85.82300000000001
1796
- - type: mrr_at_1
1797
- value: 83.62
1798
- - type: mrr_at_10
1799
- value: 89.415
1800
- - type: mrr_at_100
1801
- value: 89.484
1802
- - type: mrr_at_1000
1803
- value: 89.484
1804
- - type: mrr_at_3
1805
- value: 88.633
1806
- - type: mrr_at_5
1807
- value: 89.176
1808
- - type: ndcg_at_1
1809
- value: 83.62
1810
- - type: ndcg_at_10
1811
- value: 90.27
1812
- - type: ndcg_at_100
1813
- value: 91.23599999999999
1814
- - type: ndcg_at_1000
1815
- value: 91.293
1816
- - type: ndcg_at_3
1817
- value: 87.69500000000001
1818
- - type: ndcg_at_5
1819
- value: 89.171
1820
- - type: precision_at_1
1821
- value: 83.62
1822
- - type: precision_at_10
1823
- value: 13.683
1824
- - type: precision_at_100
1825
- value: 1.542
1826
- - type: precision_at_1000
1827
- value: 0.157
1828
- - type: precision_at_3
1829
- value: 38.363
1830
- - type: precision_at_5
1831
- value: 25.196
1832
- - type: recall_at_1
1833
- value: 72.748
1834
- - type: recall_at_10
1835
- value: 96.61699999999999
1836
- - type: recall_at_100
1837
- value: 99.789
1838
- - type: recall_at_1000
1839
- value: 99.997
1840
- - type: recall_at_3
1841
- value: 89.21
1842
- - type: recall_at_5
1843
- value: 93.418
1844
- - task:
1845
- type: Clustering
1846
- dataset:
1847
- type: mteb/reddit-clustering
1848
- name: MTEB RedditClustering
1849
- config: default
1850
- split: test
1851
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1852
- metrics:
1853
- - type: v_measure
1854
- value: 61.51909029379199
1855
- - task:
1856
- type: Clustering
1857
- dataset:
1858
- type: mteb/reddit-clustering-p2p
1859
- name: MTEB RedditClusteringP2P
1860
- config: default
1861
- split: test
1862
- revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1863
- metrics:
1864
- - type: v_measure
1865
- value: 68.24483162045645
1866
- - task:
1867
- type: Retrieval
1868
- dataset:
1869
- type: mteb/scidocs
1870
- name: MTEB SCIDOCS
1871
- config: default
1872
- split: test
1873
- revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
1874
- metrics:
1875
- - type: map_at_1
1876
- value: 4.793
1877
- - type: map_at_10
1878
- value: 13.092
1879
- - type: map_at_100
1880
- value: 15.434000000000001
1881
- - type: map_at_1000
1882
- value: 15.748999999999999
1883
- - type: map_at_3
1884
- value: 9.139
1885
- - type: map_at_5
1886
- value: 11.033
1887
- - type: mrr_at_1
1888
- value: 23.599999999999998
1889
- - type: mrr_at_10
1890
- value: 35.892
1891
- - type: mrr_at_100
1892
- value: 36.962
1893
- - type: mrr_at_1000
1894
- value: 37.009
1895
- - type: mrr_at_3
1896
- value: 32.550000000000004
1897
- - type: mrr_at_5
1898
- value: 34.415
1899
- - type: ndcg_at_1
1900
- value: 23.599999999999998
1901
- - type: ndcg_at_10
1902
- value: 21.932
1903
- - type: ndcg_at_100
1904
- value: 30.433
1905
- - type: ndcg_at_1000
1906
- value: 35.668
1907
- - type: ndcg_at_3
1908
- value: 20.483999999999998
1909
- - type: ndcg_at_5
1910
- value: 17.964
1911
- - type: precision_at_1
1912
- value: 23.599999999999998
1913
- - type: precision_at_10
1914
- value: 11.63
1915
- - type: precision_at_100
1916
- value: 2.383
1917
- - type: precision_at_1000
1918
- value: 0.363
1919
- - type: precision_at_3
1920
- value: 19.567
1921
- - type: precision_at_5
1922
- value: 16.06
1923
- - type: recall_at_1
1924
- value: 4.793
1925
- - type: recall_at_10
1926
- value: 23.558
1927
- - type: recall_at_100
1928
- value: 48.376999999999995
1929
- - type: recall_at_1000
1930
- value: 73.75699999999999
1931
- - type: recall_at_3
1932
- value: 11.903
1933
- - type: recall_at_5
1934
- value: 16.278000000000002
1935
- - task:
1936
- type: STS
1937
- dataset:
1938
- type: mteb/sickr-sts
1939
- name: MTEB SICK-R
1940
- config: default
1941
- split: test
1942
- revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
1943
- metrics:
1944
- - type: cos_sim_pearson
1945
- value: 87.31937967632581
1946
- - type: cos_sim_spearman
1947
- value: 84.30523596401186
1948
- - type: euclidean_pearson
1949
- value: 84.19537987069458
1950
- - type: euclidean_spearman
1951
- value: 84.30522052876
1952
- - type: manhattan_pearson
1953
- value: 84.16420807244911
1954
- - type: manhattan_spearman
1955
- value: 84.28515410219309
1956
- - task:
1957
- type: STS
1958
- dataset:
1959
- type: mteb/sts12-sts
1960
- name: MTEB STS12
1961
- config: default
1962
- split: test
1963
- revision: a0d554a64d88156834ff5ae9920b964011b16384
1964
- metrics:
1965
- - type: cos_sim_pearson
1966
- value: 86.17180810119646
1967
- - type: cos_sim_spearman
1968
- value: 78.44413657529002
1969
- - type: euclidean_pearson
1970
- value: 81.69054139101816
1971
- - type: euclidean_spearman
1972
- value: 78.44412412142488
1973
- - type: manhattan_pearson
1974
- value: 82.04975789626462
1975
- - type: manhattan_spearman
1976
- value: 78.78390856857253
1977
- - task:
1978
- type: STS
1979
- dataset:
1980
- type: mteb/sts13-sts
1981
- name: MTEB STS13
1982
- config: default
1983
- split: test
1984
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1985
- metrics:
1986
- - type: cos_sim_pearson
1987
- value: 88.35737871089687
1988
- - type: cos_sim_spearman
1989
- value: 88.26850223126127
1990
- - type: euclidean_pearson
1991
- value: 87.44100858335746
1992
- - type: euclidean_spearman
1993
- value: 88.26850223126127
1994
- - type: manhattan_pearson
1995
- value: 87.61572015772133
1996
- - type: manhattan_spearman
1997
- value: 88.56229552813319
1998
- - task:
1999
- type: STS
2000
- dataset:
2001
- type: mteb/sts14-sts
2002
- name: MTEB STS14
2003
- config: default
2004
- split: test
2005
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2006
- metrics:
2007
- - type: cos_sim_pearson
2008
- value: 86.8395966764906
2009
- - type: cos_sim_spearman
2010
- value: 84.49441798385489
2011
- - type: euclidean_pearson
2012
- value: 85.3259176121388
2013
- - type: euclidean_spearman
2014
- value: 84.49442124804686
2015
- - type: manhattan_pearson
2016
- value: 85.35153862806513
2017
- - type: manhattan_spearman
2018
- value: 84.60094577432503
2019
- - task:
2020
- type: STS
2021
- dataset:
2022
- type: mteb/sts15-sts
2023
- name: MTEB STS15
2024
- config: default
2025
- split: test
2026
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2027
- metrics:
2028
- - type: cos_sim_pearson
2029
- value: 90.14048269057345
2030
- - type: cos_sim_spearman
2031
- value: 90.27866978947013
2032
- - type: euclidean_pearson
2033
- value: 89.35308361940393
2034
- - type: euclidean_spearman
2035
- value: 90.27866978947013
2036
- - type: manhattan_pearson
2037
- value: 89.37601244066997
2038
- - type: manhattan_spearman
2039
- value: 90.42707449698062
2040
- - task:
2041
- type: STS
2042
- dataset:
2043
- type: mteb/sts16-sts
2044
- name: MTEB STS16
2045
- config: default
2046
- split: test
2047
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2048
- metrics:
2049
- - type: cos_sim_pearson
2050
- value: 86.8522678865688
2051
- - type: cos_sim_spearman
2052
- value: 87.37396401580446
2053
- - type: euclidean_pearson
2054
- value: 86.37219665505377
2055
- - type: euclidean_spearman
2056
- value: 87.37396385867791
2057
- - type: manhattan_pearson
2058
- value: 86.44628823799896
2059
- - type: manhattan_spearman
2060
- value: 87.49116026788859
2061
- - task:
2062
- type: STS
2063
- dataset:
2064
- type: mteb/sts17-crosslingual-sts
2065
- name: MTEB STS17 (en-en)
2066
- config: en-en
2067
- split: test
2068
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2069
- metrics:
2070
- - type: cos_sim_pearson
2071
- value: 92.94248481968916
2072
- - type: cos_sim_spearman
2073
- value: 92.68185242943188
2074
- - type: euclidean_pearson
2075
- value: 92.33802342092979
2076
- - type: euclidean_spearman
2077
- value: 92.68185242943188
2078
- - type: manhattan_pearson
2079
- value: 92.2011323340474
2080
- - type: manhattan_spearman
2081
- value: 92.43364757640346
2082
- - task:
2083
- type: STS
2084
- dataset:
2085
- type: mteb/sts22-crosslingual-sts
2086
- name: MTEB STS22 (en)
2087
- config: en
2088
- split: test
2089
- revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2090
- metrics:
2091
- - type: cos_sim_pearson
2092
- value: 70.2918782293091
2093
- - type: cos_sim_spearman
2094
- value: 68.61986257003369
2095
- - type: euclidean_pearson
2096
- value: 70.51920905899138
2097
- - type: euclidean_spearman
2098
- value: 68.61986257003369
2099
- - type: manhattan_pearson
2100
- value: 70.64673843811433
2101
- - type: manhattan_spearman
2102
- value: 68.86711466517345
2103
- - task:
2104
- type: STS
2105
- dataset:
2106
- type: mteb/stsbenchmark-sts
2107
- name: MTEB STSBenchmark
2108
- config: default
2109
- split: test
2110
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2111
- metrics:
2112
- - type: cos_sim_pearson
2113
- value: 88.62956838105524
2114
- - type: cos_sim_spearman
2115
- value: 88.80650007123052
2116
- - type: euclidean_pearson
2117
- value: 88.37976252122822
2118
- - type: euclidean_spearman
2119
- value: 88.80650007123052
2120
- - type: manhattan_pearson
2121
- value: 88.49866938476616
2122
- - type: manhattan_spearman
2123
- value: 89.02489665452616
2124
- - task:
2125
- type: Reranking
2126
- dataset:
2127
- type: mteb/scidocs-reranking
2128
- name: MTEB SciDocsRR
2129
- config: default
2130
- split: test
2131
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2132
- metrics:
2133
- - type: map
2134
- value: 86.40175229911527
2135
- - type: mrr
2136
- value: 96.61958230585682
2137
- - task:
2138
- type: Retrieval
2139
- dataset:
2140
- type: mteb/scifact
2141
- name: MTEB SciFact
2142
- config: default
2143
- split: test
2144
- revision: 0228b52cf27578f30900b9e5271d331663a030d7
2145
- metrics:
2146
- - type: map_at_1
2147
- value: 63.05
2148
- - type: map_at_10
2149
- value: 73.844
2150
- - type: map_at_100
2151
- value: 74.313
2152
- - type: map_at_1000
2153
- value: 74.321
2154
- - type: map_at_3
2155
- value: 71.17999999999999
2156
- - type: map_at_5
2157
- value: 72.842
2158
- - type: mrr_at_1
2159
- value: 65.667
2160
- - type: mrr_at_10
2161
- value: 74.772
2162
- - type: mrr_at_100
2163
- value: 75.087
2164
- - type: mrr_at_1000
2165
- value: 75.095
2166
- - type: mrr_at_3
2167
- value: 72.944
2168
- - type: mrr_at_5
2169
- value: 74.078
2170
- - type: ndcg_at_1
2171
- value: 65.667
2172
- - type: ndcg_at_10
2173
- value: 78.31700000000001
2174
- - type: ndcg_at_100
2175
- value: 79.969
2176
- - type: ndcg_at_1000
2177
- value: 80.25
2178
- - type: ndcg_at_3
2179
- value: 74.099
2180
- - type: ndcg_at_5
2181
- value: 76.338
2182
- - type: precision_at_1
2183
- value: 65.667
2184
- - type: precision_at_10
2185
- value: 10.233
2186
- - type: precision_at_100
2187
- value: 1.107
2188
- - type: precision_at_1000
2189
- value: 0.11299999999999999
2190
- - type: precision_at_3
2191
- value: 28.889
2192
- - type: precision_at_5
2193
- value: 19.0
2194
- - type: recall_at_1
2195
- value: 63.05
2196
- - type: recall_at_10
2197
- value: 90.822
2198
- - type: recall_at_100
2199
- value: 97.667
2200
- - type: recall_at_1000
2201
- value: 100.0
2202
- - type: recall_at_3
2203
- value: 79.489
2204
- - type: recall_at_5
2205
- value: 85.161
2206
- - task:
2207
- type: PairClassification
2208
- dataset:
2209
- type: mteb/sprintduplicatequestions-pairclassification
2210
- name: MTEB SprintDuplicateQuestions
2211
- config: default
2212
- split: test
2213
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2214
- metrics:
2215
- - type: cos_sim_accuracy
2216
- value: 99.83564356435643
2217
- - type: cos_sim_ap
2218
- value: 96.10619363017767
2219
- - type: cos_sim_f1
2220
- value: 91.61225514816677
2221
- - type: cos_sim_precision
2222
- value: 92.02825428859738
2223
- - type: cos_sim_recall
2224
- value: 91.2
2225
- - type: dot_accuracy
2226
- value: 99.83564356435643
2227
- - type: dot_ap
2228
- value: 96.10619363017767
2229
- - type: dot_f1
2230
- value: 91.61225514816677
2231
- - type: dot_precision
2232
- value: 92.02825428859738
2233
- - type: dot_recall
2234
- value: 91.2
2235
- - type: euclidean_accuracy
2236
- value: 99.83564356435643
2237
- - type: euclidean_ap
2238
- value: 96.10619363017769
2239
- - type: euclidean_f1
2240
- value: 91.61225514816677
2241
- - type: euclidean_precision
2242
- value: 92.02825428859738
2243
- - type: euclidean_recall
2244
- value: 91.2
2245
- - type: manhattan_accuracy
2246
- value: 99.84158415841584
2247
- - type: manhattan_ap
2248
- value: 96.27527798658713
2249
- - type: manhattan_f1
2250
- value: 92.0
2251
- - type: manhattan_precision
2252
- value: 92.0
2253
- - type: manhattan_recall
2254
- value: 92.0
2255
- - type: max_accuracy
2256
- value: 99.84158415841584
2257
- - type: max_ap
2258
- value: 96.27527798658713
2259
- - type: max_f1
2260
- value: 92.0
2261
- - task:
2262
- type: Clustering
2263
- dataset:
2264
- type: mteb/stackexchange-clustering
2265
- name: MTEB StackExchangeClustering
2266
- config: default
2267
- split: test
2268
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2269
- metrics:
2270
- - type: v_measure
2271
- value: 76.93753872885304
2272
- - task:
2273
- type: Clustering
2274
- dataset:
2275
- type: mteb/stackexchange-clustering-p2p
2276
- name: MTEB StackExchangeClusteringP2P
2277
- config: default
2278
- split: test
2279
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2280
- metrics:
2281
- - type: v_measure
2282
- value: 46.044085080870126
2283
- - task:
2284
- type: Reranking
2285
- dataset:
2286
- type: mteb/stackoverflowdupquestions-reranking
2287
- name: MTEB StackOverflowDupQuestions
2288
- config: default
2289
- split: test
2290
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2291
- metrics:
2292
- - type: map
2293
- value: 55.885129730227256
2294
- - type: mrr
2295
- value: 56.95062494694848
2296
- - task:
2297
- type: Summarization
2298
- dataset:
2299
- type: mteb/summeval
2300
- name: MTEB SummEval
2301
- config: default
2302
- split: test
2303
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2304
- metrics:
2305
- - type: cos_sim_pearson
2306
- value: 31.202047940935508
2307
- - type: cos_sim_spearman
2308
- value: 30.984832035722228
2309
- - type: dot_pearson
2310
- value: 31.20204247226978
2311
- - type: dot_spearman
2312
- value: 30.984832035722228
2313
- - task:
2314
- type: Retrieval
2315
- dataset:
2316
- type: mteb/trec-covid
2317
- name: MTEB TRECCOVID
2318
- config: default
2319
- split: test
2320
- revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2321
- metrics:
2322
- - type: map_at_1
2323
- value: 0.245
2324
- - type: map_at_10
2325
- value: 2.249
2326
- - type: map_at_100
2327
- value: 14.85
2328
- - type: map_at_1000
2329
- value: 36.596000000000004
2330
- - type: map_at_3
2331
- value: 0.717
2332
- - type: map_at_5
2333
- value: 1.18
2334
- - type: mrr_at_1
2335
- value: 94.0
2336
- - type: mrr_at_10
2337
- value: 96.167
2338
- - type: mrr_at_100
2339
- value: 96.167
2340
- - type: mrr_at_1000
2341
- value: 96.167
2342
- - type: mrr_at_3
2343
- value: 95.667
2344
- - type: mrr_at_5
2345
- value: 96.167
2346
- - type: ndcg_at_1
2347
- value: 91.0
2348
- - type: ndcg_at_10
2349
- value: 87.09700000000001
2350
- - type: ndcg_at_100
2351
- value: 69.637
2352
- - type: ndcg_at_1000
2353
- value: 62.257
2354
- - type: ndcg_at_3
2355
- value: 90.235
2356
- - type: ndcg_at_5
2357
- value: 89.51400000000001
2358
- - type: precision_at_1
2359
- value: 94.0
2360
- - type: precision_at_10
2361
- value: 90.60000000000001
2362
- - type: precision_at_100
2363
- value: 71.38
2364
- - type: precision_at_1000
2365
- value: 27.400000000000002
2366
- - type: precision_at_3
2367
- value: 94.0
2368
- - type: precision_at_5
2369
- value: 93.2
2370
- - type: recall_at_1
2371
- value: 0.245
2372
- - type: recall_at_10
2373
- value: 2.366
2374
- - type: recall_at_100
2375
- value: 17.491
2376
- - type: recall_at_1000
2377
- value: 58.772999999999996
2378
- - type: recall_at_3
2379
- value: 0.7270000000000001
2380
- - type: recall_at_5
2381
- value: 1.221
2382
- - task:
2383
- type: Retrieval
2384
- dataset:
2385
- type: mteb/touche2020
2386
- name: MTEB Touche2020
2387
- config: default
2388
- split: test
2389
- revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2390
- metrics:
2391
- - type: map_at_1
2392
- value: 3.435
2393
- - type: map_at_10
2394
- value: 12.147
2395
- - type: map_at_100
2396
- value: 18.724
2397
- - type: map_at_1000
2398
- value: 20.426
2399
- - type: map_at_3
2400
- value: 6.526999999999999
2401
- - type: map_at_5
2402
- value: 9.198
2403
- - type: mrr_at_1
2404
- value: 48.980000000000004
2405
- - type: mrr_at_10
2406
- value: 62.970000000000006
2407
- - type: mrr_at_100
2408
- value: 63.288999999999994
2409
- - type: mrr_at_1000
2410
- value: 63.288999999999994
2411
- - type: mrr_at_3
2412
- value: 59.184000000000005
2413
- - type: mrr_at_5
2414
- value: 61.224000000000004
2415
- - type: ndcg_at_1
2416
- value: 46.939
2417
- - type: ndcg_at_10
2418
- value: 30.61
2419
- - type: ndcg_at_100
2420
- value: 41.683
2421
- - type: ndcg_at_1000
2422
- value: 53.144000000000005
2423
- - type: ndcg_at_3
2424
- value: 36.284
2425
- - type: ndcg_at_5
2426
- value: 34.345
2427
- - type: precision_at_1
2428
- value: 48.980000000000004
2429
- - type: precision_at_10
2430
- value: 26.122
2431
- - type: precision_at_100
2432
- value: 8.204
2433
- - type: precision_at_1000
2434
- value: 1.6019999999999999
2435
- - type: precision_at_3
2436
- value: 35.374
2437
- - type: precision_at_5
2438
- value: 32.653
2439
- - type: recall_at_1
2440
- value: 3.435
2441
- - type: recall_at_10
2442
- value: 18.953
2443
- - type: recall_at_100
2444
- value: 50.775000000000006
2445
- - type: recall_at_1000
2446
- value: 85.858
2447
- - type: recall_at_3
2448
- value: 7.813000000000001
2449
- - type: recall_at_5
2450
- value: 11.952
2451
- - task:
2452
- type: Classification
2453
- dataset:
2454
- type: mteb/toxic_conversations_50k
2455
- name: MTEB ToxicConversationsClassification
2456
- config: default
2457
- split: test
2458
- revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2459
- metrics:
2460
- - type: accuracy
2461
- value: 71.2938
2462
- - type: ap
2463
- value: 15.090139095602268
2464
- - type: f1
2465
- value: 55.23862650598296
2466
- - task:
2467
- type: Classification
2468
- dataset:
2469
- type: mteb/tweet_sentiment_extraction
2470
- name: MTEB TweetSentimentExtractionClassification
2471
- config: default
2472
- split: test
2473
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2474
- metrics:
2475
- - type: accuracy
2476
- value: 64.7623089983022
2477
- - type: f1
2478
- value: 65.07617131099336
2479
- - task:
2480
- type: Clustering
2481
- dataset:
2482
- type: mteb/twentynewsgroups-clustering
2483
- name: MTEB TwentyNewsgroupsClustering
2484
- config: default
2485
- split: test
2486
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2487
- metrics:
2488
- - type: v_measure
2489
- value: 57.2988222684939
2490
- - task:
2491
- type: PairClassification
2492
- dataset:
2493
- type: mteb/twittersemeval2015-pairclassification
2494
- name: MTEB TwitterSemEval2015
2495
- config: default
2496
- split: test
2497
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2498
- metrics:
2499
- - type: cos_sim_accuracy
2500
- value: 88.6034451928235
2501
- - type: cos_sim_ap
2502
- value: 81.51815279166863
2503
- - type: cos_sim_f1
2504
- value: 74.43794671864849
2505
- - type: cos_sim_precision
2506
- value: 73.34186939820742
2507
- - type: cos_sim_recall
2508
- value: 75.56728232189973
2509
- - type: dot_accuracy
2510
- value: 88.6034451928235
2511
- - type: dot_ap
2512
- value: 81.51816956866841
2513
- - type: dot_f1
2514
- value: 74.43794671864849
2515
- - type: dot_precision
2516
- value: 73.34186939820742
2517
- - type: dot_recall
2518
- value: 75.56728232189973
2519
- - type: euclidean_accuracy
2520
- value: 88.6034451928235
2521
- - type: euclidean_ap
2522
- value: 81.51817015121485
2523
- - type: euclidean_f1
2524
- value: 74.43794671864849
2525
- - type: euclidean_precision
2526
- value: 73.34186939820742
2527
- - type: euclidean_recall
2528
- value: 75.56728232189973
2529
- - type: manhattan_accuracy
2530
- value: 88.5736424867378
2531
- - type: manhattan_ap
2532
- value: 81.37610101292196
2533
- - type: manhattan_f1
2534
- value: 74.2504182215931
2535
- - type: manhattan_precision
2536
- value: 72.46922883697563
2537
- - type: manhattan_recall
2538
- value: 76.12137203166228
2539
- - type: max_accuracy
2540
- value: 88.6034451928235
2541
- - type: max_ap
2542
- value: 81.51817015121485
2543
- - type: max_f1
2544
- value: 74.43794671864849
2545
- - task:
2546
- type: PairClassification
2547
- dataset:
2548
- type: mteb/twitterurlcorpus-pairclassification
2549
- name: MTEB TwitterURLCorpus
2550
- config: default
2551
- split: test
2552
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2553
- metrics:
2554
- - type: cos_sim_accuracy
2555
- value: 89.53118329646446
2556
- - type: cos_sim_ap
2557
- value: 87.41972033060013
2558
- - type: cos_sim_f1
2559
- value: 79.4392523364486
2560
- - type: cos_sim_precision
2561
- value: 75.53457372951958
2562
- - type: cos_sim_recall
2563
- value: 83.7696335078534
2564
- - type: dot_accuracy
2565
- value: 89.53118329646446
2566
- - type: dot_ap
2567
- value: 87.41971646088945
2568
- - type: dot_f1
2569
- value: 79.4392523364486
2570
- - type: dot_precision
2571
- value: 75.53457372951958
2572
- - type: dot_recall
2573
- value: 83.7696335078534
2574
- - type: euclidean_accuracy
2575
- value: 89.53118329646446
2576
- - type: euclidean_ap
2577
- value: 87.41972415605997
2578
- - type: euclidean_f1
2579
- value: 79.4392523364486
2580
- - type: euclidean_precision
2581
- value: 75.53457372951958
2582
- - type: euclidean_recall
2583
- value: 83.7696335078534
2584
- - type: manhattan_accuracy
2585
- value: 89.5855163581325
2586
- - type: manhattan_ap
2587
- value: 87.51158697451964
2588
- - type: manhattan_f1
2589
- value: 79.54455087655883
2590
- - type: manhattan_precision
2591
- value: 74.96763643796416
2592
- - type: manhattan_recall
2593
- value: 84.71666153372344
2594
- - type: max_accuracy
2595
- value: 89.5855163581325
2596
- - type: max_ap
2597
- value: 87.51158697451964
2598
- - type: max_f1
2599
- value: 79.54455087655883
2600
  language:
2601
  - en
2602
  license: cc-by-nc-4.0
 
2
  tags:
3
  - transformers
4
  - mteb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  language:
6
  - en
7
  license: cc-by-nc-4.0