Liu-Xiang commited on
Commit
a80f72b
·
verified ·
1 Parent(s): b2c21e0

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,806 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: The lawsuits were filed in the wake of media reports that the U.S.
35
+ Department of Justice had served civil investigative demands upon these carriers
36
+ seeking documents and information relating to this subject.
37
+ sentences:
38
+ - What type of details does Note 15 of the Consolidated Financial Statements provide?
39
+ - What action did the U.S. Department of Justice take in relation to the antitrust
40
+ allegations against Delta, American, United, and Southwest airlines?
41
+ - What does the index in a financial report indicate?
42
+ - source_sentence: Unearned Revenue comprises mainly unearned revenue related to volume
43
+ licensing programs, which may include Software Assurance ("SA") and cloud services.
44
+ sentences:
45
+ - What was the total number of Starbucks employees worldwide as of October 1, 2023?
46
+ - What primarily comprises unearned revenue according to the discussed financial
47
+ statements?
48
+ - How are impairment charges for the years 2021, 2022, and 2023 recorded for restaurants
49
+ and offices, and what is their impact on financial statements?
50
+ - source_sentence: Total sales and revenues for 2023 were $67.060 billion, an increase
51
+ of $7.633 billion, or 13 percent, compared with $59.427 billion in 2022.
52
+ sentences:
53
+ - How much did Caterpillar's total sales and revenues increase by in 2023 compared
54
+ to 2022?
55
+ - What is included in the cost of revenues for Google?
56
+ - What entity audited the company's consolidated financial statements?
57
+ - source_sentence: 'Weighted average remaining lease term and discount rate at March
58
+ 31, 2023 and 2022 are as follows: At March 31, 2023 - Lease term: 7.5 years, Discount
59
+ rate: 3.3%; At March 31, 2022 - Lease term: 6.8 years, Discount rate: 2.5%.'
60
+ sentences:
61
+ - What operating system is used for the Company's iPhone line?
62
+ - What was the SRO's accrued amount as a receivable for CAT implementation expenses
63
+ as of December 31, 2023?
64
+ - What were the lease terms and discount rates for operating leases as of March
65
+ 31, 2023 and 2022?
66
+ - source_sentence: During 2023, continuing investing activities generated $240 million,
67
+ significantly influenced by $14.5 billion received from the maturities and sales
68
+ of investments, with expenditures of $13.9 billion on investments and $456 million
69
+ on property and equipment.
70
+ sentences:
71
+ - What significant financial activity occurred in continuing investing activities
72
+ in 2023?
73
+ - What indicates where to find information about legal proceedings in the consolidated
74
+ financial statements of an Annual Report on Form 10-K?
75
+ - How much cash, cash equivalents, and unrestricted marketable securities did the
76
+ company have as of September 30, 2023?
77
+ model-index:
78
+ - name: BGE base Financial Matryoshka
79
+ results:
80
+ - task:
81
+ type: information-retrieval
82
+ name: Information Retrieval
83
+ dataset:
84
+ name: dim 768
85
+ type: dim_768
86
+ metrics:
87
+ - type: cosine_accuracy@1
88
+ value: 0.6871428571428572
89
+ name: Cosine Accuracy@1
90
+ - type: cosine_accuracy@3
91
+ value: 0.8171428571428572
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_accuracy@5
94
+ value: 0.8542857142857143
95
+ name: Cosine Accuracy@5
96
+ - type: cosine_accuracy@10
97
+ value: 0.9042857142857142
98
+ name: Cosine Accuracy@10
99
+ - type: cosine_precision@1
100
+ value: 0.6871428571428572
101
+ name: Cosine Precision@1
102
+ - type: cosine_precision@3
103
+ value: 0.27238095238095233
104
+ name: Cosine Precision@3
105
+ - type: cosine_precision@5
106
+ value: 0.17085714285714282
107
+ name: Cosine Precision@5
108
+ - type: cosine_precision@10
109
+ value: 0.09042857142857141
110
+ name: Cosine Precision@10
111
+ - type: cosine_recall@1
112
+ value: 0.6871428571428572
113
+ name: Cosine Recall@1
114
+ - type: cosine_recall@3
115
+ value: 0.8171428571428572
116
+ name: Cosine Recall@3
117
+ - type: cosine_recall@5
118
+ value: 0.8542857142857143
119
+ name: Cosine Recall@5
120
+ - type: cosine_recall@10
121
+ value: 0.9042857142857142
122
+ name: Cosine Recall@10
123
+ - type: cosine_ndcg@10
124
+ value: 0.7940751364022482
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@10
127
+ value: 0.7589863945578228
128
+ name: Cosine Mrr@10
129
+ - type: cosine_map@100
130
+ value: 0.7632147157763912
131
+ name: Cosine Map@100
132
+ - task:
133
+ type: information-retrieval
134
+ name: Information Retrieval
135
+ dataset:
136
+ name: dim 512
137
+ type: dim_512
138
+ metrics:
139
+ - type: cosine_accuracy@1
140
+ value: 0.6828571428571428
141
+ name: Cosine Accuracy@1
142
+ - type: cosine_accuracy@3
143
+ value: 0.8142857142857143
144
+ name: Cosine Accuracy@3
145
+ - type: cosine_accuracy@5
146
+ value: 0.8542857142857143
147
+ name: Cosine Accuracy@5
148
+ - type: cosine_accuracy@10
149
+ value: 0.9014285714285715
150
+ name: Cosine Accuracy@10
151
+ - type: cosine_precision@1
152
+ value: 0.6828571428571428
153
+ name: Cosine Precision@1
154
+ - type: cosine_precision@3
155
+ value: 0.2714285714285714
156
+ name: Cosine Precision@3
157
+ - type: cosine_precision@5
158
+ value: 0.17085714285714285
159
+ name: Cosine Precision@5
160
+ - type: cosine_precision@10
161
+ value: 0.09014285714285714
162
+ name: Cosine Precision@10
163
+ - type: cosine_recall@1
164
+ value: 0.6828571428571428
165
+ name: Cosine Recall@1
166
+ - type: cosine_recall@3
167
+ value: 0.8142857142857143
168
+ name: Cosine Recall@3
169
+ - type: cosine_recall@5
170
+ value: 0.8542857142857143
171
+ name: Cosine Recall@5
172
+ - type: cosine_recall@10
173
+ value: 0.9014285714285715
174
+ name: Cosine Recall@10
175
+ - type: cosine_ndcg@10
176
+ value: 0.7923306650275913
177
+ name: Cosine Ndcg@10
178
+ - type: cosine_mrr@10
179
+ value: 0.7573690476190474
180
+ name: Cosine Mrr@10
181
+ - type: cosine_map@100
182
+ value: 0.7616425347398016
183
+ name: Cosine Map@100
184
+ - task:
185
+ type: information-retrieval
186
+ name: Information Retrieval
187
+ dataset:
188
+ name: dim 256
189
+ type: dim_256
190
+ metrics:
191
+ - type: cosine_accuracy@1
192
+ value: 0.6642857142857143
193
+ name: Cosine Accuracy@1
194
+ - type: cosine_accuracy@3
195
+ value: 0.8042857142857143
196
+ name: Cosine Accuracy@3
197
+ - type: cosine_accuracy@5
198
+ value: 0.8557142857142858
199
+ name: Cosine Accuracy@5
200
+ - type: cosine_accuracy@10
201
+ value: 0.8971428571428571
202
+ name: Cosine Accuracy@10
203
+ - type: cosine_precision@1
204
+ value: 0.6642857142857143
205
+ name: Cosine Precision@1
206
+ - type: cosine_precision@3
207
+ value: 0.2680952380952381
208
+ name: Cosine Precision@3
209
+ - type: cosine_precision@5
210
+ value: 0.17114285714285712
211
+ name: Cosine Precision@5
212
+ - type: cosine_precision@10
213
+ value: 0.0897142857142857
214
+ name: Cosine Precision@10
215
+ - type: cosine_recall@1
216
+ value: 0.6642857142857143
217
+ name: Cosine Recall@1
218
+ - type: cosine_recall@3
219
+ value: 0.8042857142857143
220
+ name: Cosine Recall@3
221
+ - type: cosine_recall@5
222
+ value: 0.8557142857142858
223
+ name: Cosine Recall@5
224
+ - type: cosine_recall@10
225
+ value: 0.8971428571428571
226
+ name: Cosine Recall@10
227
+ - type: cosine_ndcg@10
228
+ value: 0.781836757101301
229
+ name: Cosine Ndcg@10
230
+ - type: cosine_mrr@10
231
+ value: 0.7447794784580494
232
+ name: Cosine Mrr@10
233
+ - type: cosine_map@100
234
+ value: 0.7491639960128558
235
+ name: Cosine Map@100
236
+ - task:
237
+ type: information-retrieval
238
+ name: Information Retrieval
239
+ dataset:
240
+ name: dim 128
241
+ type: dim_128
242
+ metrics:
243
+ - type: cosine_accuracy@1
244
+ value: 0.6457142857142857
245
+ name: Cosine Accuracy@1
246
+ - type: cosine_accuracy@3
247
+ value: 0.7828571428571428
248
+ name: Cosine Accuracy@3
249
+ - type: cosine_accuracy@5
250
+ value: 0.83
251
+ name: Cosine Accuracy@5
252
+ - type: cosine_accuracy@10
253
+ value: 0.8857142857142857
254
+ name: Cosine Accuracy@10
255
+ - type: cosine_precision@1
256
+ value: 0.6457142857142857
257
+ name: Cosine Precision@1
258
+ - type: cosine_precision@3
259
+ value: 0.26095238095238094
260
+ name: Cosine Precision@3
261
+ - type: cosine_precision@5
262
+ value: 0.16599999999999998
263
+ name: Cosine Precision@5
264
+ - type: cosine_precision@10
265
+ value: 0.08857142857142856
266
+ name: Cosine Precision@10
267
+ - type: cosine_recall@1
268
+ value: 0.6457142857142857
269
+ name: Cosine Recall@1
270
+ - type: cosine_recall@3
271
+ value: 0.7828571428571428
272
+ name: Cosine Recall@3
273
+ - type: cosine_recall@5
274
+ value: 0.83
275
+ name: Cosine Recall@5
276
+ - type: cosine_recall@10
277
+ value: 0.8857142857142857
278
+ name: Cosine Recall@10
279
+ - type: cosine_ndcg@10
280
+ value: 0.7638551069830676
281
+ name: Cosine Ndcg@10
282
+ - type: cosine_mrr@10
283
+ value: 0.7249971655328794
284
+ name: Cosine Mrr@10
285
+ - type: cosine_map@100
286
+ value: 0.7295529486648893
287
+ name: Cosine Map@100
288
+ - task:
289
+ type: information-retrieval
290
+ name: Information Retrieval
291
+ dataset:
292
+ name: dim 64
293
+ type: dim_64
294
+ metrics:
295
+ - type: cosine_accuracy@1
296
+ value: 0.6171428571428571
297
+ name: Cosine Accuracy@1
298
+ - type: cosine_accuracy@3
299
+ value: 0.7385714285714285
300
+ name: Cosine Accuracy@3
301
+ - type: cosine_accuracy@5
302
+ value: 0.7928571428571428
303
+ name: Cosine Accuracy@5
304
+ - type: cosine_accuracy@10
305
+ value: 0.84
306
+ name: Cosine Accuracy@10
307
+ - type: cosine_precision@1
308
+ value: 0.6171428571428571
309
+ name: Cosine Precision@1
310
+ - type: cosine_precision@3
311
+ value: 0.24619047619047615
312
+ name: Cosine Precision@3
313
+ - type: cosine_precision@5
314
+ value: 0.15857142857142856
315
+ name: Cosine Precision@5
316
+ - type: cosine_precision@10
317
+ value: 0.08399999999999999
318
+ name: Cosine Precision@10
319
+ - type: cosine_recall@1
320
+ value: 0.6171428571428571
321
+ name: Cosine Recall@1
322
+ - type: cosine_recall@3
323
+ value: 0.7385714285714285
324
+ name: Cosine Recall@3
325
+ - type: cosine_recall@5
326
+ value: 0.7928571428571428
327
+ name: Cosine Recall@5
328
+ - type: cosine_recall@10
329
+ value: 0.84
330
+ name: Cosine Recall@10
331
+ - type: cosine_ndcg@10
332
+ value: 0.7256498773041486
333
+ name: Cosine Ndcg@10
334
+ - type: cosine_mrr@10
335
+ value: 0.6893407029478454
336
+ name: Cosine Mrr@10
337
+ - type: cosine_map@100
338
+ value: 0.6948404384614005
339
+ name: Cosine Map@100
340
+ ---
341
+
342
+ # BGE base Financial Matryoshka
343
+
344
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
345
+
346
+ ## Model Details
347
+
348
+ ### Model Description
349
+ - **Model Type:** Sentence Transformer
350
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
351
+ - **Maximum Sequence Length:** 512 tokens
352
+ - **Output Dimensionality:** 768 tokens
353
+ - **Similarity Function:** Cosine Similarity
354
+ <!-- - **Training Dataset:** Unknown -->
355
+ - **Language:** en
356
+ - **License:** apache-2.0
357
+
358
+ ### Model Sources
359
+
360
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
361
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
362
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
363
+
364
+ ### Full Model Architecture
365
+
366
+ ```
367
+ SentenceTransformer(
368
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
369
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
370
+ (2): Normalize()
371
+ )
372
+ ```
373
+
374
+ ## Usage
375
+
376
+ ### Direct Usage (Sentence Transformers)
377
+
378
+ First install the Sentence Transformers library:
379
+
380
+ ```bash
381
+ pip install -U sentence-transformers
382
+ ```
383
+
384
+ Then you can load this model and run inference.
385
+ ```python
386
+ from sentence_transformers import SentenceTransformer
387
+
388
+ # Download from the 🤗 Hub
389
+ model = SentenceTransformer("Liu-Xiang/bge-base-financial-matryoshka")
390
+ # Run inference
391
+ sentences = [
392
+ 'During 2023, continuing investing activities generated $240 million, significantly influenced by $14.5 billion received from the maturities and sales of investments, with expenditures of $13.9 billion on investments and $456 million on property and equipment.',
393
+ 'What significant financial activity occurred in continuing investing activities in 2023?',
394
+ 'What indicates where to find information about legal proceedings in the consolidated financial statements of an Annual Report on Form 10-K?',
395
+ ]
396
+ embeddings = model.encode(sentences)
397
+ print(embeddings.shape)
398
+ # [3, 768]
399
+
400
+ # Get the similarity scores for the embeddings
401
+ similarities = model.similarity(embeddings, embeddings)
402
+ print(similarities.shape)
403
+ # [3, 3]
404
+ ```
405
+
406
+ <!--
407
+ ### Direct Usage (Transformers)
408
+
409
+ <details><summary>Click to see the direct usage in Transformers</summary>
410
+
411
+ </details>
412
+ -->
413
+
414
+ <!--
415
+ ### Downstream Usage (Sentence Transformers)
416
+
417
+ You can finetune this model on your own dataset.
418
+
419
+ <details><summary>Click to expand</summary>
420
+
421
+ </details>
422
+ -->
423
+
424
+ <!--
425
+ ### Out-of-Scope Use
426
+
427
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
428
+ -->
429
+
430
+ ## Evaluation
431
+
432
+ ### Metrics
433
+
434
+ #### Information Retrieval
435
+ * Dataset: `dim_768`
436
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
437
+
438
+ | Metric | Value |
439
+ |:--------------------|:-----------|
440
+ | cosine_accuracy@1 | 0.6871 |
441
+ | cosine_accuracy@3 | 0.8171 |
442
+ | cosine_accuracy@5 | 0.8543 |
443
+ | cosine_accuracy@10 | 0.9043 |
444
+ | cosine_precision@1 | 0.6871 |
445
+ | cosine_precision@3 | 0.2724 |
446
+ | cosine_precision@5 | 0.1709 |
447
+ | cosine_precision@10 | 0.0904 |
448
+ | cosine_recall@1 | 0.6871 |
449
+ | cosine_recall@3 | 0.8171 |
450
+ | cosine_recall@5 | 0.8543 |
451
+ | cosine_recall@10 | 0.9043 |
452
+ | cosine_ndcg@10 | 0.7941 |
453
+ | cosine_mrr@10 | 0.759 |
454
+ | **cosine_map@100** | **0.7632** |
455
+
456
+ #### Information Retrieval
457
+ * Dataset: `dim_512`
458
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
459
+
460
+ | Metric | Value |
461
+ |:--------------------|:-----------|
462
+ | cosine_accuracy@1 | 0.6829 |
463
+ | cosine_accuracy@3 | 0.8143 |
464
+ | cosine_accuracy@5 | 0.8543 |
465
+ | cosine_accuracy@10 | 0.9014 |
466
+ | cosine_precision@1 | 0.6829 |
467
+ | cosine_precision@3 | 0.2714 |
468
+ | cosine_precision@5 | 0.1709 |
469
+ | cosine_precision@10 | 0.0901 |
470
+ | cosine_recall@1 | 0.6829 |
471
+ | cosine_recall@3 | 0.8143 |
472
+ | cosine_recall@5 | 0.8543 |
473
+ | cosine_recall@10 | 0.9014 |
474
+ | cosine_ndcg@10 | 0.7923 |
475
+ | cosine_mrr@10 | 0.7574 |
476
+ | **cosine_map@100** | **0.7616** |
477
+
478
+ #### Information Retrieval
479
+ * Dataset: `dim_256`
480
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
481
+
482
+ | Metric | Value |
483
+ |:--------------------|:-----------|
484
+ | cosine_accuracy@1 | 0.6643 |
485
+ | cosine_accuracy@3 | 0.8043 |
486
+ | cosine_accuracy@5 | 0.8557 |
487
+ | cosine_accuracy@10 | 0.8971 |
488
+ | cosine_precision@1 | 0.6643 |
489
+ | cosine_precision@3 | 0.2681 |
490
+ | cosine_precision@5 | 0.1711 |
491
+ | cosine_precision@10 | 0.0897 |
492
+ | cosine_recall@1 | 0.6643 |
493
+ | cosine_recall@3 | 0.8043 |
494
+ | cosine_recall@5 | 0.8557 |
495
+ | cosine_recall@10 | 0.8971 |
496
+ | cosine_ndcg@10 | 0.7818 |
497
+ | cosine_mrr@10 | 0.7448 |
498
+ | **cosine_map@100** | **0.7492** |
499
+
500
+ #### Information Retrieval
501
+ * Dataset: `dim_128`
502
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
503
+
504
+ | Metric | Value |
505
+ |:--------------------|:-----------|
506
+ | cosine_accuracy@1 | 0.6457 |
507
+ | cosine_accuracy@3 | 0.7829 |
508
+ | cosine_accuracy@5 | 0.83 |
509
+ | cosine_accuracy@10 | 0.8857 |
510
+ | cosine_precision@1 | 0.6457 |
511
+ | cosine_precision@3 | 0.261 |
512
+ | cosine_precision@5 | 0.166 |
513
+ | cosine_precision@10 | 0.0886 |
514
+ | cosine_recall@1 | 0.6457 |
515
+ | cosine_recall@3 | 0.7829 |
516
+ | cosine_recall@5 | 0.83 |
517
+ | cosine_recall@10 | 0.8857 |
518
+ | cosine_ndcg@10 | 0.7639 |
519
+ | cosine_mrr@10 | 0.725 |
520
+ | **cosine_map@100** | **0.7296** |
521
+
522
+ #### Information Retrieval
523
+ * Dataset: `dim_64`
524
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
525
+
526
+ | Metric | Value |
527
+ |:--------------------|:-----------|
528
+ | cosine_accuracy@1 | 0.6171 |
529
+ | cosine_accuracy@3 | 0.7386 |
530
+ | cosine_accuracy@5 | 0.7929 |
531
+ | cosine_accuracy@10 | 0.84 |
532
+ | cosine_precision@1 | 0.6171 |
533
+ | cosine_precision@3 | 0.2462 |
534
+ | cosine_precision@5 | 0.1586 |
535
+ | cosine_precision@10 | 0.084 |
536
+ | cosine_recall@1 | 0.6171 |
537
+ | cosine_recall@3 | 0.7386 |
538
+ | cosine_recall@5 | 0.7929 |
539
+ | cosine_recall@10 | 0.84 |
540
+ | cosine_ndcg@10 | 0.7256 |
541
+ | cosine_mrr@10 | 0.6893 |
542
+ | **cosine_map@100** | **0.6948** |
543
+
544
+ <!--
545
+ ## Bias, Risks and Limitations
546
+
547
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
548
+ -->
549
+
550
+ <!--
551
+ ### Recommendations
552
+
553
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
554
+ -->
555
+
556
+ ## Training Details
557
+
558
+ ### Training Dataset
559
+
560
+ #### Unnamed Dataset
561
+
562
+
563
+ * Size: 6,300 training samples
564
+ * Columns: <code>positive</code> and <code>anchor</code>
565
+ * Approximate statistics based on the first 1000 samples:
566
+ | | positive | anchor |
567
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
568
+ | type | string | string |
569
+ | details | <ul><li>min: 8 tokens</li><li>mean: 45.54 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.38 tokens</li><li>max: 46 tokens</li></ul> |
570
+ * Samples:
571
+ | positive | anchor |
572
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
573
+ | <code>If the discount rate used to calculate the present value of these reserves changed by 25 basis points, net income would have been affected by approximately $1.1 million for fiscal 2023.</code> | <code>By what amount would net income for fiscal 2023 be affected if the discount rate used for calculating the present value of reserves changed by 25 basis points?</code> |
574
+ | <code>Net revenue | $ | 8,110,518 | | | $ | 6,256,617 | | 100.0 | % | 100.0 | % | $ | 1,853,901 | 29.6 | %</code> | <code>What was the percentage increase in net revenue in 2022 compared to 2021?</code> |
575
+ | <code>Item 8 covers Financial Statements and Supplementary Data.</code> | <code>What is included in Item 8 of the document?</code> |
576
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
577
+ ```json
578
+ {
579
+ "loss": "MultipleNegativesRankingLoss",
580
+ "matryoshka_dims": [
581
+ 768,
582
+ 512,
583
+ 256,
584
+ 128,
585
+ 64
586
+ ],
587
+ "matryoshka_weights": [
588
+ 1,
589
+ 1,
590
+ 1,
591
+ 1,
592
+ 1
593
+ ],
594
+ "n_dims_per_step": -1
595
+ }
596
+ ```
597
+
598
+ ### Training Hyperparameters
599
+ #### Non-Default Hyperparameters
600
+
601
+ - `eval_strategy`: epoch
602
+ - `per_device_train_batch_size`: 32
603
+ - `per_device_eval_batch_size`: 16
604
+ - `gradient_accumulation_steps`: 16
605
+ - `learning_rate`: 2e-05
606
+ - `num_train_epochs`: 4
607
+ - `lr_scheduler_type`: cosine
608
+ - `warmup_ratio`: 0.1
609
+ - `bf16`: True
610
+ - `tf32`: True
611
+ - `load_best_model_at_end`: True
612
+ - `optim`: adamw_torch_fused
613
+ - `batch_sampler`: no_duplicates
614
+
615
+ #### All Hyperparameters
616
+ <details><summary>Click to expand</summary>
617
+
618
+ - `overwrite_output_dir`: False
619
+ - `do_predict`: False
620
+ - `eval_strategy`: epoch
621
+ - `prediction_loss_only`: True
622
+ - `per_device_train_batch_size`: 32
623
+ - `per_device_eval_batch_size`: 16
624
+ - `per_gpu_train_batch_size`: None
625
+ - `per_gpu_eval_batch_size`: None
626
+ - `gradient_accumulation_steps`: 16
627
+ - `eval_accumulation_steps`: None
628
+ - `learning_rate`: 2e-05
629
+ - `weight_decay`: 0.0
630
+ - `adam_beta1`: 0.9
631
+ - `adam_beta2`: 0.999
632
+ - `adam_epsilon`: 1e-08
633
+ - `max_grad_norm`: 1.0
634
+ - `num_train_epochs`: 4
635
+ - `max_steps`: -1
636
+ - `lr_scheduler_type`: cosine
637
+ - `lr_scheduler_kwargs`: {}
638
+ - `warmup_ratio`: 0.1
639
+ - `warmup_steps`: 0
640
+ - `log_level`: passive
641
+ - `log_level_replica`: warning
642
+ - `log_on_each_node`: True
643
+ - `logging_nan_inf_filter`: True
644
+ - `save_safetensors`: True
645
+ - `save_on_each_node`: False
646
+ - `save_only_model`: False
647
+ - `restore_callback_states_from_checkpoint`: False
648
+ - `no_cuda`: False
649
+ - `use_cpu`: False
650
+ - `use_mps_device`: False
651
+ - `seed`: 42
652
+ - `data_seed`: None
653
+ - `jit_mode_eval`: False
654
+ - `use_ipex`: False
655
+ - `bf16`: True
656
+ - `fp16`: False
657
+ - `fp16_opt_level`: O1
658
+ - `half_precision_backend`: auto
659
+ - `bf16_full_eval`: False
660
+ - `fp16_full_eval`: False
661
+ - `tf32`: True
662
+ - `local_rank`: 0
663
+ - `ddp_backend`: None
664
+ - `tpu_num_cores`: None
665
+ - `tpu_metrics_debug`: False
666
+ - `debug`: []
667
+ - `dataloader_drop_last`: False
668
+ - `dataloader_num_workers`: 0
669
+ - `dataloader_prefetch_factor`: None
670
+ - `past_index`: -1
671
+ - `disable_tqdm`: False
672
+ - `remove_unused_columns`: True
673
+ - `label_names`: None
674
+ - `load_best_model_at_end`: True
675
+ - `ignore_data_skip`: False
676
+ - `fsdp`: []
677
+ - `fsdp_min_num_params`: 0
678
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
679
+ - `fsdp_transformer_layer_cls_to_wrap`: None
680
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
681
+ - `deepspeed`: None
682
+ - `label_smoothing_factor`: 0.0
683
+ - `optim`: adamw_torch_fused
684
+ - `optim_args`: None
685
+ - `adafactor`: False
686
+ - `group_by_length`: False
687
+ - `length_column_name`: length
688
+ - `ddp_find_unused_parameters`: None
689
+ - `ddp_bucket_cap_mb`: None
690
+ - `ddp_broadcast_buffers`: False
691
+ - `dataloader_pin_memory`: True
692
+ - `dataloader_persistent_workers`: False
693
+ - `skip_memory_metrics`: True
694
+ - `use_legacy_prediction_loop`: False
695
+ - `push_to_hub`: False
696
+ - `resume_from_checkpoint`: None
697
+ - `hub_model_id`: None
698
+ - `hub_strategy`: every_save
699
+ - `hub_private_repo`: False
700
+ - `hub_always_push`: False
701
+ - `gradient_checkpointing`: False
702
+ - `gradient_checkpointing_kwargs`: None
703
+ - `include_inputs_for_metrics`: False
704
+ - `eval_do_concat_batches`: True
705
+ - `fp16_backend`: auto
706
+ - `push_to_hub_model_id`: None
707
+ - `push_to_hub_organization`: None
708
+ - `mp_parameters`:
709
+ - `auto_find_batch_size`: False
710
+ - `full_determinism`: False
711
+ - `torchdynamo`: None
712
+ - `ray_scope`: last
713
+ - `ddp_timeout`: 1800
714
+ - `torch_compile`: False
715
+ - `torch_compile_backend`: None
716
+ - `torch_compile_mode`: None
717
+ - `dispatch_batches`: None
718
+ - `split_batches`: None
719
+ - `include_tokens_per_second`: False
720
+ - `include_num_input_tokens_seen`: False
721
+ - `neftune_noise_alpha`: None
722
+ - `optim_target_modules`: None
723
+ - `batch_eval_metrics`: False
724
+ - `batch_sampler`: no_duplicates
725
+ - `multi_dataset_batch_sampler`: proportional
726
+
727
+ </details>
728
+
729
+ ### Training Logs
730
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
731
+ |:--------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
732
+ | 0.96 | 3 | - | 0.6943 | 0.7200 | 0.7341 | 0.6337 | 0.7346 |
733
+ | 1.92 | 6 | - | 0.7178 | 0.7393 | 0.7525 | 0.6764 | 0.7513 |
734
+ | 2.88 | 9 | - | 0.7280 | 0.7468 | 0.7584 | 0.6926 | 0.7611 |
735
+ | 3.2 | 10 | 3.3659 | - | - | - | - | - |
736
+ | **3.84** | **12** | **-** | **0.7296** | **0.7492** | **0.7616** | **0.6948** | **0.7632** |
737
+
738
+ * The bold row denotes the saved checkpoint.
739
+
740
+ ### Framework Versions
741
+ - Python: 3.9.18
742
+ - Sentence Transformers: 3.0.1
743
+ - Transformers: 4.41.2
744
+ - PyTorch: 2.1.2+cu121
745
+ - Accelerate: 0.32.1
746
+ - Datasets: 2.19.1
747
+ - Tokenizers: 0.19.1
748
+
749
+ ## Citation
750
+
751
+ ### BibTeX
752
+
753
+ #### Sentence Transformers
754
+ ```bibtex
755
+ @inproceedings{reimers-2019-sentence-bert,
756
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
757
+ author = "Reimers, Nils and Gurevych, Iryna",
758
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
759
+ month = "11",
760
+ year = "2019",
761
+ publisher = "Association for Computational Linguistics",
762
+ url = "https://arxiv.org/abs/1908.10084",
763
+ }
764
+ ```
765
+
766
+ #### MatryoshkaLoss
767
+ ```bibtex
768
+ @misc{kusupati2024matryoshka,
769
+ title={Matryoshka Representation Learning},
770
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
771
+ year={2024},
772
+ eprint={2205.13147},
773
+ archivePrefix={arXiv},
774
+ primaryClass={cs.LG}
775
+ }
776
+ ```
777
+
778
+ #### MultipleNegativesRankingLoss
779
+ ```bibtex
780
+ @misc{henderson2017efficient,
781
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
782
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
783
+ year={2017},
784
+ eprint={1705.00652},
785
+ archivePrefix={arXiv},
786
+ primaryClass={cs.CL}
787
+ }
788
+ ```
789
+
790
+ <!--
791
+ ## Glossary
792
+
793
+ *Clearly define terms in order to be accessible across audiences.*
794
+ -->
795
+
796
+ <!--
797
+ ## Model Card Authors
798
+
799
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
800
+ -->
801
+
802
+ <!--
803
+ ## Model Card Contact
804
+
805
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
806
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:345fd512c3f79ec3f3c5a19b65530c7682d749932fd0d6bdb625f840896de649
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff