File size: 8,552 Bytes
81281cf 2d387ad 81281cf 2d387ad 2fb135d 2d387ad ff62c26 2fb135d 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf d2d8367 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf 2d387ad 81281cf d2d8367 25d33e5 2fb135d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
license: apache-2.0
library_name: transformers
tags:
- not-for-all-audiences
- chemistry
- math
- code
- physics
base_model: mistralai/Mistral-7B-v0.1
datasets:
- Locutusque/hercules-v2.0
- Locutusque/hercules-v2.5
model-index:
- name: Hercules-2.5-Mistral-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.03
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.49
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.44
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.05
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hercules-2.5-Mistral-7B
name: Open LLM Leaderboard
---
# Model Card: Hercules-2.5-Mistral-7B
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/aaxvEOjNxHKZ7rRGPolW-.png)
## Model Description
Hercules-2.5-Mistral-7B is a fine-tuned language model derived from Mistralai/Mistral-7B-v0.1. It is specifically designed to excel in instruction following, function calls, and conversational interactions across various scientific and technical domains. The dataset used for fine-tuning, also named Hercules-v2.5, expands upon the diverse capabilities of OpenHermes-2.5 with contributions from numerous curated datasets. This fine-tuning has hercules-v2.5 with enhanced abilities in:
- Complex Instruction Following: Understanding and accurately executing multi-step instructions, even those involving specialized terminology.
- Function Calling: Seamlessly interpreting and executing function calls, providing appropriate input and output values.
- Domain-Specific Knowledge: Engaging in informative and educational conversations about Biology, Chemistry, Physics, Mathematics, Medicine, Computer Science, and more.
## Intended Uses & Potential Bias
Hercules-2.5-Mistral-7B is well-suited to the following applications:
- Specialized Chatbots: Creating knowledgeable chatbots and conversational agents in scientific and technical fields.
- Instructional Assistants: Supporting users with educational and step-by-step guidance in various disciplines.
- Code Generation and Execution: Facilitating code execution through function calls, aiding in software development and prototyping.
**Important Note: Although Hercules-v2.5 is carefully constructed, it's important to be aware that the underlying data sources may contain biases or reflect harmful stereotypes. Use this model with caution and consider additional measures to mitigate potential biases in its responses.**
## Limitations and Risks
- Toxicity: The dataset may still contain toxic or harmful examples despite cleaning efforts.
- Hallucinations and Factual Errors: Like other language models, Hercules-2.0-Mistral-7B may generate incorrect or misleading information, especially in specialized domains where it lacks sufficient expertise.
- Potential for Misuse: The ability to engage in technical conversations and execute function calls could be misused for malicious purposes.
## Evaluation Metrics
To provide suitable benchmarks for Hercules-2.5-Mistral-7B, consider using a combination of the following metrics:
- Instruction Following: Task-specific evaluation datasets for instruction following in relevant domains (e.g., datasets specifically focused on math problems, code generation, etc.).
- Function Calling: Evaluate the model's accuracy in interpreting and executing function calls with varying inputs and outputs.
- Conversational Quality: Assess the model's ability to maintain coherence, naturalness, and informativeness across conversational turns.
## Training Data
Hercules-2.5-Mistral-7B is fine-tuned from the following sources:
- cognitivecomputations/dolphin (first 300k examples)
- Evol Instruct 70K && 140K
- teknium/GPT4-LLM-Cleaned
- jondurbin/airoboros-3.2
- AlekseyKorshuk/camel-chatml
- CollectiveCognition/chats-data-2023-09-22
- Nebulous/lmsys-chat-1m-smortmodelsonly
- glaiveai/glaive-code-assistant-v2
- glaiveai/glaive-code-assistant
- glaiveai/glaive-function-calling-v2
- garage-bAInd/Open-Platypus
- meta-math/MetaMathQA
- teknium/GPTeacher-General-Instruct
- GPTeacher roleplay datasets
- BI55/MedText
- pubmed_qa labeled subset
- M4-ai/LDJnr_combined_inout_format
- Unnatural Instructions
- CollectiveCognition/chats-data-2023-09-27
- CollectiveCognition/chats-data-2023-10-16
## Training Procedure
- This model was trained on 8 kaggle TPUs, using torch xla SPMD for high MXU efficiency. There was no expense on my end (meaning you can reproduce this too!)
- A learning rate of 2e-06 with the Adam optimizer. A linear scheduler was used, with an end factor of 0.3. A low learning rate was used to prevent exploding gradients.
- No mixed precision was used, with the default dtype being bfloat16.
- Trained on 200,000 examples of Hercules-v2.0 and 100,000 examples of Hercules-v2.5
- No model parameters were frozen.
- This model was trained on OpenAI's ChatML prompt format. Because this model has function calling capabilities, the prompt format is slightly different, here's what it would look like: ```<|im_start|>system\n{message}<|im_end|>\n<|im_start|>user\n{user message}<|im_end|>\n<|im_start|>call\n{function call message}<|im_end|>\n<|im_start|>function\n{function response message}<|im_end|>\n<|im_start|>assistant\n{assistant message}</s>```
This model was fine-tuned using the TPU-Alignment repository. https://github.com/Locutusque/TPU-Alignment
# Updates
- **🔥 Earned a score of nearly 64 on Open LLM Leaderboard, outperforming most merge-free SFT mistral fine-tunes 🔥**
# Quants
exl2 by @bartowski https://huggingface.co/bartowski/Hercules-2.5-Mistral-7B-exl2
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__Hercules-2.5-Mistral-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.59|
|AI2 Reasoning Challenge (25-Shot)|62.03|
|HellaSwag (10-Shot) |83.79|
|MMLU (5-Shot) |63.49|
|TruthfulQA (0-shot) |43.44|
|Winogrande (5-shot) |79.72|
|GSM8k (5-shot) |49.05|
|