LoftQ commited on
Commit
10b7c81
1 Parent(s): 51ec79d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - quantization
8
+ - lora
9
+ - loftq
10
+ - llama
11
+ ---
12
+ # LoftQ Initialization
13
+
14
+ | [Paper](https://arxiv.org/abs/2310.08659) | [Code](https://github.com/yxli2123/LoftQ) | [PEFT Example](https://github.com/huggingface/peft/tree/main/examples/loftq_finetuning) |
15
+
16
+ LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W.
17
+
18
+ This model, `CodeLlama-13b-hf-4bit-64rank`, is obtained from [CodeLLAMA-13b](https://huggingface.co/meta-llama/CodeLlama-13b-hf).
19
+ The backbone is under `LoftQ/CodeLlama-13b-hf-4bit-64rank` and LoRA adapters are under the `subfolder='loftq_init'`.
20
+
21
+ ## Model Info
22
+ ### Backbone
23
+ - Stored format: `torch.bfloat16`
24
+ - Size: ~ 14 GiB
25
+ - Loaded format: bitsandbytes nf4
26
+ - Size loaded on GPU: ~3.5 GiB
27
+
28
+ ### LoRA adapters
29
+ - rank: 64
30
+ - lora_alpha: 16
31
+ - target_modules: ["down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"]
32
+
33
+ ## Usage
34
+
35
+ **Training.** Here's an example of loading this model and preparing for the LoRA fine-tuning.
36
+
37
+ ```python
38
+ import torch
39
+ from transformers import AutoModelForCausalLM, BitsAndBytesConfig
40
+ from peft import PeftModel
41
+
42
+ MODEL_ID = "LoftQ/CodeLlama-13b-hf-4bit-64rank"
43
+
44
+ base_model = AutoModelForCausalLM.from_pretrained(
45
+ MODEL_ID,
46
+ torch_dtype=torch.bfloat16, # you may change it with different models
47
+ quantization_config=BitsAndBytesConfig(
48
+ load_in_4bit=True,
49
+ bnb_4bit_compute_dtype=torch.bfloat16, # bfloat16 is recommended
50
+ bnb_4bit_use_double_quant=False,
51
+ bnb_4bit_quant_type='nf4',
52
+ ),
53
+ )
54
+ peft_model = PeftModel.from_pretrained(
55
+ base_model,
56
+ MODEL_ID,
57
+ subfolder="loftq_init",
58
+ is_trainable=True,
59
+ )
60
+
61
+ # Do training with peft_model ...
62
+ ```
63
+
64
+ **Inference.** Here is an example code for inference after the model has been fine-tuned on [GSM8K](https://huggingface.co/datasets/gsm8k).
65
+
66
+ ```python
67
+ import torch
68
+ from transformers import AutoModelForCausalLM, BitsAndBytesConfig
69
+ from peft import PeftModel
70
+
71
+ MODEL_ID = "LoftQ/CodeLlama-13b-hf-4bit-64rank"
72
+
73
+ base_model = AutoModelForCausalLM.from_pretrained(
74
+ MODEL_ID,
75
+ torch_dtype=torch.bfloat16, # you may change it with different models
76
+ quantization_config=BitsAndBytesConfig(
77
+ load_in_4bit=True,
78
+ bnb_4bit_compute_dtype=torch.bfloat16, # bfloat16 is recommended
79
+ bnb_4bit_use_double_quant=False,
80
+ bnb_4bit_quant_type='nf4',
81
+ ),
82
+ )
83
+ peft_model = PeftModel.from_pretrained(
84
+ base_model,
85
+ MODEL_ID,
86
+ subfolder="gsm8k",
87
+ is_trainable=True,
88
+ )
89
+
90
+ # Do inference with peft_model ...
91
+ ```
92
+
93
+ See the full code at our [Github Repo]((https://github.com/yxli2123/LoftQ))
94
+
95
+
96
+ ## Citation
97
+
98
+ ```bibtex
99
+ @article{li2023loftq,
100
+ title={Loftq: Lora-fine-tuning-aware quantization for large language models},
101
+ author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo},
102
+ journal={arXiv preprint arXiv:2310.08659},
103
+ year={2023}
104
+ }
105
+ ```