LoneStriker commited on
Commit
f1845e9
·
verified ·
1 Parent(s): 2d6dcc5

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -1,35 +1,5 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ BioMistral-7B-TIES-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
2
+ BioMistral-7B-TIES-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
3
+ BioMistral-7B-TIES-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
4
+ BioMistral-7B-TIES-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
5
+ BioMistral-7B-TIES-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BioMistral-7B-TIES-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14e40af6ec1a99fb9eb7e81373c2c380e97e09b797d348104f01050fa1bb8349
3
+ size 3822024928
BioMistral-7B-TIES-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e313c1e625ccb653d93fa9ec462f86af15ea0663277bf8f407e1229226f3245
3
+ size 4368439520
BioMistral-7B-TIES-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26cb31b2aaedb7810fce4de343ac1b36acc677f3abc82707d918175ca17ce5f0
3
+ size 5131409632
BioMistral-7B-TIES-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4c9c5e89d591a4ad17b7caed9fbe2684985be81a7ea53de8102d6f5f041aaea
3
+ size 5942065376
BioMistral-7B-TIES-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd4ad6efa454d2531dfcd14907f2cb900d4581508d547414bbae336d1820a3ca
3
+ size 7695857888
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - mistralai/Mistral-7B-Instruct-v0.1
4
+ - BioMistral/BioMistral-7B
5
+ library_name: transformers
6
+ tags:
7
+ - mergekit
8
+ - merge
9
+ - ties
10
+ - medical
11
+ - biology
12
+ license: apache-2.0
13
+ datasets:
14
+ - pubmed
15
+ language:
16
+ - fr
17
+ - en
18
+ - pl
19
+ - es
20
+ - it
21
+ - ro
22
+ - de
23
+ - nl
24
+ pipeline_tag: text-generation
25
+ ---
26
+ # BioMistral-7B-mistral7instruct-ties
27
+
28
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
29
+
30
+ ## Merge Details
31
+ ### Merge Method
32
+
33
+ This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) as a base.
34
+
35
+ ### Models Merged
36
+
37
+ The following models were included in the merge:
38
+ * [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B)
39
+
40
+ ### Configuration
41
+
42
+ The following YAML configuration was used to produce this model:
43
+
44
+ ```yaml
45
+
46
+ models:
47
+ - model: mistralai/Mistral-7B-Instruct-v0.1
48
+ - model: BioMistral/BioMistral-7B
49
+ parameters:
50
+ density: 0.5
51
+ weight: 0.5
52
+ merge_method: ties
53
+ base_model: mistralai/Mistral-7B-Instruct-v0.1
54
+ parameters:
55
+ normalize: true
56
+ dtype: bfloat16
57
+
58
+ ```
59
+
60
+
61
+
62
+ <p align="center">
63
+ <img src="https://huggingface.co/BioMistral/BioMistral-7B/resolve/main/wordart_blue_m_rectangle.png?download=true" alt="drawing" width="250"/>
64
+ </p>
65
+
66
+ # BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains
67
+
68
+ **Abstract:**
69
+
70
+ Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges.
71
+ In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral's superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.
72
+
73
+ **Advisory Notice!** Although BioMistral is intended to encapsulate medical knowledge sourced from high-quality evidence, it hasn't been tailored to effectively, safely, or suitably convey this knowledge within professional parameters for action. We advise refraining from utilizing BioMistral in medical contexts unless it undergoes thorough alignment with specific use cases and undergoes further testing, notably including randomized controlled trials in real-world medical environments. BioMistral 7B may possess inherent risks and biases that have not yet been thoroughly assessed. Additionally, the model's performance has not been evaluated in real-world clinical settings. Consequently, we recommend using BioMistral 7B strictly as a research tool and advise against deploying it in production environments for natural language generation or any professional health and medical purposes.
74
+
75
+ # 1. BioMistral models
76
+
77
+ **BioMistral** is a suite of Mistral-based further pre-trained open source models suited for the medical domains and pre-trained using textual data from PubMed Central Open Access (CC0, CC BY, CC BY-SA, and CC BY-ND). All the models are trained using the CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/jean-zay/) French HPC.
78
+
79
+ | Model Name | Base Model | Model Type | Sequence Length | Download |
80
+ |:-------------------:|:----------------------------------:|:-------------------:|:---------------:|:-----------------------------------------------------:|
81
+ | BioMistral-7B | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Further Pre-trained | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B) |
82
+ | BioMistral-7B-DARE | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Merge DARE | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-DARE) |
83
+ | BioMistral-7B-TIES | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Merge TIES | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-TIES) |
84
+ | BioMistral-7B-SLERP | [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) | Merge SLERP | 2048 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-SLERP) |
85
+
86
+ # 2. Quantized Models
87
+
88
+ | Base Model | Method | q_group_size | w_bit | version | VRAM GB | Time | Download |
89
+ |:-------------------:|:------:|:------------:|:-----:|:-------:|:-------:|:------:|:--------:|
90
+ | BioMistral-7B | FP16/BF16 | | | | 15.02 | x1.00 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B) |
91
+ | BioMistral-7B | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-AWQ-QGS128-W4-GEMM) |
92
+ | BioMistral-7B | AWQ | 128 | 4 | GEMV | 4.68 | x10.30 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-AWQ-QGS128-W4-GEMV) |
93
+ | BioMistral-7B | BnB.4 | | 4 | | 5.03 | x3.25 | [HuggingFace](blank) |
94
+ | BioMistral-7B | BnB.8 | | 8 | | 8.04 | x4.34 | [HuggingFace](blank) |
95
+ | BioMistral-7B-DARE | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-DARE-AWQ-QGS128-W4-GEMM) |
96
+ | BioMistral-7B-TIES | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-TIES-AWQ-QGS128-W4-GEMM) |
97
+ | BioMistral-7B-SLERP | AWQ | 128 | 4 | GEMM | 4.68 | x1.41 | [HuggingFace](https://huggingface.co/BioMistral/BioMistral-7B-SLERP-AWQ-QGS128-W4-GEMM) |
98
+
99
+ # 2. Using BioMistral
100
+
101
+ You can use BioMistral with [Hugging Face's Transformers library](https://github.com/huggingface/transformers) as follow.
102
+
103
+ Loading the model and tokenizer :
104
+
105
+ ```python
106
+ from transformers import AutoModel, AutoTokenizer
107
+
108
+ tokenizer = AutoTokenizer.from_pretrained("BioMistral/BioMistral-7B")
109
+ model = AutoModel.from_pretrained("BioMistral/BioMistral-7B")
110
+ ```
111
+
112
+ # 3. Supervised Fine-tuning Benchmark
113
+
114
+ | | Clinical KG | Medical Genetics | Anatomy | Pro Medicine | College Biology | College Medicine | MedQA | MedQA 5 opts | PubMedQA | MedMCQA | Avg. |
115
+ |-------------------------------------------|:---------------------------------------------:|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------|
116
+ | **BioMistral 7B** | 59.9 | 64.0 | 56.5 | 60.4 | 59.0 | 54.7 | 50.6 | 42.8 | 77.5 | 48.1 | 57.3 |
117
+ | **Mistral 7B Instruct** | **62.9** | 57.0 | 55.6 | 59.4 | 62.5 | <u>57.2</u> | 42.0 | 40.9 | 75.7 | 46.1 | 55.9 |
118
+ | | | | | | | | | | | | |
119
+ | **BioMistral 7B Ensemble** | <u>62.8</u> | 62.7 | <u>57.5</u> | **63.5** | 64.3 | 55.7 | 50.6 | 43.6 | 77.5 | **48.8** | 58.7 |
120
+ | **BioMistral 7B DARE** | 62.3 | **67.0** | 55.8 | 61.4 | **66.9** | **58.0** | **51.1** | **45.2** | <u>77.7</u> | <u>48.7</u> | **59.4** |
121
+ | **BioMistral 7B TIES** | 60.1 | <u>65.0</u> | **58.5** | 60.5 | 60.4 | 56.5 | 49.5 | 43.2 | 77.5 | 48.1 | 57.9 |
122
+ | **BioMistral 7B SLERP** | 62.5 | 64.7 | 55.8 | <u>62.7</u> | <u>64.8</u> | 56.3 | <u>50.8</u> | <u>44.3</u> | **77.8** | 48.6 | <u>58.8</u> |
123
+ | | | | | | | | | | | | |
124
+ | **MedAlpaca 7B** | 53.1 | 58.0 | 54.1 | 58.8 | 58.1 | 48.6 | 40.1 | 33.7 | 73.6 | 37.0 | 51.5 |
125
+ | **PMC-LLaMA 7B** | 24.5 | 27.7 | 35.3 | 17.4 | 30.3 | 23.3 | 25.5 | 20.2 | 72.9 | 26.6 | 30.4 |
126
+ | **MediTron-7B** | 41.6 | 50.3 | 46.4 | 27.9 | 44.4 | 30.8 | 41.6 | 28.1 | 74.9 | 41.3 | 42.7 |
127
+ | **BioMedGPT-LM-7B** | 51.4 | 52.0 | 49.4 | 53.3 | 50.7 | 49.1 | 42.5 | 33.9 | 76.8 | 37.6 | 49.7 |
128
+ | | | | | | | | | | | | |
129
+ | **GPT-3.5 Turbo 1106*** | 74.71 | 74.00 | 65.92 | 72.79 | 72.91 | 64.73 | 57.71 | 50.82 | 72.66 | 53.79 | 66.0 |
130
+
131
+ Supervised Fine-Tuning (SFT) performance of BioMistral 7B models compared to baselines, measured by accuracy (↑) and averaged across 3 random seeds of 3-shot. DARE, TIES, and SLERP are model merging strategies that combine BioMistral 7B and Mistral 7B Instruct. Best model in bold, and second-best underlined. *GPT-3.5 Turbo performances are reported from the 3-shot results without SFT.
132
+
133
+ # Citation BibTeX
134
+
135
+ Arxiv : [https://arxiv.org/abs/2402.10373](https://arxiv.org/abs/2402.10373)
136
+
137
+ ```bibtex
138
+ @misc{labrak2024biomistral,
139
+ title={BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains},
140
+ author={Yanis Labrak and Adrien Bazoge and Emmanuel Morin and Pierre-Antoine Gourraud and Mickael Rouvier and Richard Dufour},
141
+ year={2024},
142
+ eprint={2402.10373},
143
+ archivePrefix={arXiv},
144
+ primaryClass={cs.CL}
145
+ }
146
+ ```
147
+
148
+ **CAUTION!** Both direct and downstream users need to be informed about the risks, biases, and constraints inherent in the model. While the model can produce natural language text, our exploration of its capabilities and limitations is just beginning. In fields such as medicine, comprehending these limitations is crucial. Hence, we strongly advise against deploying this model for natural language generation in production or for professional tasks in the realm of health and medicine.
149
+
mergekit_config.yml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ models:
3
+ - model: mistralai/Mistral-7B-Instruct-v0.1
4
+ - model: Project44/BioMistral-7B-0.1-PubMed-V2
5
+ parameters:
6
+ density: 0.5
7
+ weight: 0.5
8
+ merge_method: ties
9
+ base_model: mistralai/Mistral-7B-Instruct-v0.1
10
+ parameters:
11
+ normalize: true
12
+ dtype: bfloat16